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Abstract:

Understanding ledge behavior in aluminum reduction cells is critical for maintaining thermal balance and
operational stability. However, predicting this behavior remains challenging due to the complex interplay
of thermal, chemical, and operational factors. This study introduces a novel user-friendly Python-based
tool designed for rapid, time-based prediction of ledge behavior. Requiring only the number of days
since cell start-up as input, the tool automatically estimates electrolyte temperature, cryolite ratio, and ledge
area using empirical relationships, and qualitatively supports its output by visualizing the evolution of
ledge shape through a pre-stored image database. This single-parameter input significantly reduces
complexity, enabling rapid estimation and visualization, thus offering practical utility for education,
operator training, and preliminary process diagnostics in aluminum electrolysis. Validation against
industrial data confirms robust predictive accuracy, with coefficient of determination (R2) values of 0.9877
for electrolyte temperature, 0.9375 for cryolite ratio, and 0.916 for ledge area, underscoring its reliability
despite inherent model simplifications.

Keywords: Aluminum reduction cell; Ledge formation; Empirical modeling; Python tool; Industrial process
optimization.

Introduction efficiency, reducing environmental impact, and
ensuring economic viability in the highly
The Hall-Héroult method has been the competitive global aluminum market. Increased

energy consumption, high production costs, and
potential environmental concerns are caused by
many factors, including problems in cell operation

dominant method of primary aluminium
production since its invention in 1886 [1]. In this
method, alumina  (aluminum  oxide) is
electrolytically reduced to metallic aluminum in a [2].
molten cryolite-based electrolyte. The efficient
and stable operation of large-scale aluminum
reduction cells is critical to maintaining energy

However, achieving stable operation is
challenging due to complex interdependencies
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among thermal, chemical, and operational factors,
particularly the dynamic behavior of the ledge—a
frozen electrolyte layer lining the cell’s inner
walls and bottom [3]. In addition to thermal
insulation, the flange plays a vital role in
physically protecting the heat-resistant lining of
the carbon-based sidewall cell from aggressive
corrosion and chemical attack by highly corrosive
electrolyte molten, thereby prolonging the service
life of the cell [4]. Furthermore, the shape and
extent of the edge significantly affect the
distribution of electric current within the cell,
impacting both the efficiency of the current and
the overall performance of the process [5]. Thus,
maintaining a stable and appropriately shaped
ledge is a delicate balancing act, requiring careful
control of numerous operational parameters. The
cryolite ratio and electrolyte temperature are
crucial parameters influencing electrolyte
properties and cell performance [6]. The
aluminum electrolytic cell is based on a perforated
anode and a shaped cathode as shown in Fig.1.
Ledge stability depends on precise control of
operational parameters, notably electrolyte
temperature and cryolite ratio (NaF/AlFs molar
ratio) [7].
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Fig. 1. The structural design of a current
aluminum reduction cell [7]
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Deviations in these parameters can lead to ledge
overgrowth or melt back, causing thermal
imbalances, increased energy use, and cell failure

[8].

Existing predictive tools rely on physics-based
models (e.g., finite element analysis [9]) that
simulate multi-physics interactions (thermal,
electrical, chemical). While accurate, these
models demand exhaustive inputs, material
properties, boundary conditions, real-time sensor
data, and significant computational resources,
often leading to computational times of hours
or even days, severely limiting their practical
usability for rapid diagnostics or real-time
operator training [10]. Furthermore, they lack
integration of time-dependent empirical trends, a
critical gap given that ledge dynamics evolve
predictably with cell age [11, 12].

The main aims of this study are: 1) develop
a Days-Only Input tool to predict ledge behavior
(temperature, cryolite ratio, area) and visualize
shape evolution using only operational time (days
since  startup), 2) establish  empirical
models correlating ledge dynamics with cell age,
validated against industrial data, and 3)
democratize access to ledge analysis for
education, training, and preliminary process
optimization.

The novelty in this paper eliminates complex
inputs, such as boundary conditions, required by
prior tools [8,9], allowing for rapid predictions of
less than 10 seconds. It combines quantitative
predictions (R2 > 0.91) with qualitative
visualization, filling a gap in previous studies.
Additionally, it provides teachers and operators
with an intuitive platform to explore temporal
edge behavior, reducing reliance on expensive,
high-precision simulations.
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Materials and Methods

Data Source

The data used in this study were derived from
three industrial aluminum reduction cells
(numbers 617, 619, and 634) [11]. The dataset
comprised two primary components: (i) charts
illustrating the electrolyte temperature (°C) and
average ledge area (m?) (Fig. 2), and the cryolite
ratio (Fig. 3) for these cells throughout
approximately 150 to 281 days, respectively from
cells start-up, and (ii) 10 pre-stored images of Cell
617’s ledge at 15-day intervals (15-150 days)
[11].
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Fig. 2. Electrolyte temperature and average ledge
area of cells 617, 619, and 634 on different days
from their start-up [11].
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Fig. 3. Relationship between cryolite ratio with
time during 281 days from the cells' startup [11].

Python-Based Time-Based Ledge Behavior
Prediction Tool

A user-friendly software tool was developed
using Python 3.10, with Tkinter for GUI design,
enabling intuitive user interaction[13] and Pillow
(PIL) for image handling[14]. This tool
implements a Days-Only Input approach,
requiring only the number of days from cell start-
up as user input. The program's functionality is as
follows: upon user input of "days from start-up"
into a designated entry field, the software
performs the following steps automatically: (i)
estimates the electrolyte temperature and cryolite
ratio via empirical functions (described in section
2.3), (ii) identifies the nearest matching ledge
shape image from the pre-stored database (15-150
days, 15-day intervals) [11] and displays the
corresponding pre-stored ledge shape image in the
GUI window, and (iii) calculates and displays the
predicted ledge area based on the input days and
the estimated electrolyte temperature and cryolite
ratio. As illustrated in Fig. 4, the GUI features a
simplified interface with the "Days from Start-up"
input field, a "Predict Ledge Shape" button, and
output areas for the visualized shape, estimated
electrolyte temperature, estimated cryolite ratio,
and predicted ledge area. The "Save Image"
functionality allows users to export the visualized
ledge shape for further use or documentation. The
program logic primarily focuses on predicting
ledge behavior as a function of time, making it a
readily usable tool for time-dependent analysis.

¥

Days from Start-up:

Predict Ledge Shape

Save Image

Fig. 4. A screenshot of the program interface
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Mathematical Functions for Time-Based
Estimations and Ledge Area Prediction

To enable Days-Only Input functionality,
empirical mathematical models were developed to
estimate electrolyte temperature (T(t) and cryolite
ratio (CR(t) as functions of operational time.
These models were derived from digitized
experimental data (Figs. 1 and 2) using a web-
based tool [15], which converted graphical trends
into numerical datasets.

The empirical estimation function for
electrolyte temperature as a function of
operational days is:

T(t)=m*t+c 1)

Digitized T(t) data from Figure 1 revealed a
linear relationship with operational days.
A piecewise linear function was selected to
capture this behavior. Parameters (m,c) were
optimized using  nonlinear  least-squares
regression via SciPy’s curve fit function. The
model achieved a coefficient of determination
(R?) of 0.9877, indicating excellent agreement
with experimental data.

Similarly, an empirical function for cryolite
ratio as a function of operational days was derived
from the digitized data of Fig. 2. Observing the
trend in this data, the exponential decay
function was chosen as an appropriate empirical
model. The general form of this function is
illustrated by Equation (2):

CR(t)=A.eN-t/tau CR) +B 2

Curve fitting techniques were applied to the
digitized data to determine the A, tau_CR, and B
values. The estimated function exhibited an R®
value of 0.9375.

Ledge area (A) was modeled as a temperature-
and cryolite-dependent process with saturation
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behavior, combining an exponential growth-to-
limit framework and a thermal scaling term. The
parameters for this function were determined
through curve fitting to the digitized ledge area
data from Figure 1. The general form of this
function is given by Equation (3):

A (t, T(t), CR(t)) = (1+k *(T(t)-T_ref))
*[A_max_base*(1-e”(-t/tau_area)) + A 0] (3)

Parameter optimization using digitized ledge
area data (Figure 1) yielded an R2 of 0.91606,
reflecting high predictive accuracy under
combined thermal and chemical dynamics.

Results

Python-Based Time-Based Ledge Behavior
Prediction Tool

The developed Python program with Days-
Only Input provides a simplified tool for
predicting ledge behavior. Upon entering the day
from start-up as shown in Fig. 4 and clicking the
"Predict Ledge Shape" button, the program
automatically estimates and displays the
electrolyte temperature, cryolite ratio, predicted
ledge area, and the corresponding ledge shape
image. Fig. 5 illustrates an example output for an
input of 45 days, demonstrating the program's
ability to provide a comprehensive time-based
prediction of ledge behavior. The "Save Image"
button functionality is retained, allowing users to
export the visualized ledge shape.

Model Validation and Fitted Functions

Qualitative and quantitative assessments of the
model's performance against the experimental
data were used to validate the accuracy and
reliability of these derived empirical functions.
Visual inspection was performed by plotting the
predicted values from each empirical function
(T(), CR(t), and A (t, T, CR)) alongside the
corresponding digitized experimental data points.
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As illustrated in Fig. 6, these graphical
comparisons enabled a qualitative assessment of
the fitted curves’ alignment with the observed
trends, patterns, and potential deviations in the
data. Strong agreement between the empirical
functions developed in this study and the training
data. Residuals were calculated as the difference
between the observed experimental value and the
model's predicted value for each data point.
Residual  analysis  confirmed  acceptable
deviations (approximately £2.5% for temperature
estimations, +7% for cryolite ratio estimations,
and £8% for ledge area predictions, relative to the
range of the training data).
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]
3 || {8
4 ] E
g
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Predicted Ledge Area : 0.51 m’

Save Image

Fig. 5. Example outputs for input 45 days.
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Fig. 6. Visual validation of the empirical models
for cryolite ratio, ledge area, and temperature as
functions of time.

Quantitative evaluation of the goodness-of-fit
was conducted using statistical metrics. The
R? was calculated for each empirical function for
its respective digitized dataset (electrolyte
temperature vs. time, cryolite ratio vs. time, and
ledge area vs. time & temperature). R? values
of 0.9877 for electrolyte temperature, 0.9375 for
cryolite ratio, and 0.916 for ledge area,
respectively. The R? values are closer to 1,
indicating a better fit.

Discussion

Practical Utility and Industrial Relevance

The Days-Only Input tool addresses a critical
gap in aluminum cells by translating complex
ledge dynamics into an accessible, time-
dependent framework. Unlike physics-based
models (e.g., ANSYS [8]) ANSYS requiring >20
inputs (material properties, boundary conditions)
and hours of computational time, this tool reduces
input complexity to a single parameter
(operational days) and delivers predictions in <10
seconds. This democratizes access for operators in
resource-limited  settings, enabling  rapid
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diagnostics (e.g., identifying thermal imbalances)
without specialized software.

The tool’s ability to visualize ledge thickening
over time (Fig. 5) aligns with empirical
observations from industrial case studies [16],
where ledge overgrowth beyond 120 days
increased energy consumption by ~12% [17]. By
enabling proactive adjustments (e.g., anode height
modifications), the tool could mitigate such
inefficiencies, potentially saving >$30,000
annually per cell in energy costs [18].

Limitations and Model Robustness

While the empirical models for temperature
(R2 = 0.9877), cryolite ratio (R2 = 0.9375), and
ledge area (R2 = 0.8557) show strong correlations
with the training data, their reliance on historical
datasets from three cells introduces inherent
biases. For example, the exponential decay model
for cryolite ratio assumes uniform bath chemistry,
which may not hold in cells with fluctuating
alumina purity or anode effects [4]. Similarly, the
ledge area model’s temperature sensitivity
coefficient [20] oversimplifies the nonlinear
relationship between thermal gradients and ledge
growth observed in multi-physics simulations [9].
These simplifications limit the tool’s predictive
accuracy in non-standard operating conditions,
such as cells with atypical refractory designs or
irregular thermal profiles.

Comparative Advantages Over Existing
Approaches

The tool’s Days-Only Input approach offers
distinct advantages over commercial software, as
shown in Table 1. This simplicity enables iterative
hypothesis testing (e.g., **How does a 30-day
startup delay affect ledge area?”’*) without
advanced expertise, aligning with Industry 4.0
demands for agile, interpretive tools [21]. While
high-fidelity models remain essential for
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precision, this tool complements them by
providing rapid preliminary insights.

Table 1. Comparison between the Days-Only
Input approach and commercial software

Metric This Tool | ANSYS [8]

Input 20+
aFr)ameters 1 (Days) (Material,
P boundary)
(?omputatlonal <10 25 hours
time seconds

GUI- Requires
Educational driven, no CF(g)
accessibility CFD .

) training
expertise

Broader Implications for Industry and
Academia

In educational contexts, this tool bridges the
gap between theoretical lectures on the Hall-
Héroult process and hands-on visualization of
ledge dynamics. For instance, instructors can
demonstrate how prolonged operation (e.g., 150
days) leads to ledge overgrowth, increasing the
risk of sidewall erosion, concepts often abstracted
in textbooks [7]. For industry, the tool’s
predictions could inform preventive maintenance
schedules, such as optimizing anode adjustments
to stabilize ledge morphology before thermal
imbalances occur. However, its utility for
operational decision-making remains contingent
on supplementary data (e.g., real-time
temperature sensors) to validate predictions.
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Conclusion

This study successfully developed a Days-
Only Input Python tool for predicting ledge
behavior in aluminum reduction cells, addressing
critical gaps in accessibility and computational
efficiency. By requiring only operational time
(days since startup) as input, the tool democratizes
ledge analysis, enabling rapid estimation of
electrolyte temperature (R?=0.9877), cryolite
ratio (R?=0.9375), and ledge area (R?=0.916)
alongside visualizations of shape evolution. Key

eliminate the reliance on complex inputs (e.g.,
boundary conditions) required by physics-based
models, reducing prediction time from hours to
seconds, combining quantitative predictions with
qualitative visualizations, and bridging theoretical
education and industrial training. It can be further
enhanced by incorporating more sophisticated
models and user-adjustable input parameters in
future iterations, contingent upon the availability
of more comprehensive and detailed experimental
data capturing the multivariate dependencies of
ledge formation

contributions

include:
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Nomenclature and Abbreviations

Term/Symbol Definition

t Time (days)

T Electrolyte Temperature (°C)

T(t) Estimated Electrolyte Temperature (°C) at time t
CR Cryolite Ratio (unitless)

CR(t) Estimated Cryolite Ratio at time t (unitless)

A(t, T(t), CR(t)

Predicted Ledge Area (m?) at time t, estimated temperature T(t), and
estimated cryolite ratio CR(t)

m Parameter m for temperature function

c Parameter c for temperature function

A Parameter A for cryolite ratio function

taucr Parameter taucr for cryolite ratio decay (days)
B Parameter B for cryolite ratio function

k Parameter k for temperature sensitivity

Tref Parameter Tref (Reference Temperature) (°C)
A max,base Parameter Amax,base for ledge area function
tauarea Parameter tauarea for ledge area growth (days)
A0 Parameter AO for ledge area function
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