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Abstract: 

Understanding ledge behavior in aluminum reduction cells is critical for maintaining thermal balance and 

operational stability. However, predicting this behavior remains challenging due to the complex interplay 

of thermal, chemical, and operational factors. This study introduces a novel user-friendly Python-based 

tool designed for rapid, time-based prediction of ledge behavior. Requiring only the number of days 

since cell start-up as input, the tool automatically estimates electrolyte temperature, cryolite ratio, and ledge 

area using empirical relationships, and qualitatively supports its output by visualizing the evolution of 

ledge shape through a pre-stored image database. This single-parameter input significantly reduces 

complexity, enabling rapid estimation and visualization, thus offering practical utility for education, 

operator training, and preliminary process diagnostics in aluminum electrolysis. Validation against 

industrial data confirms robust predictive accuracy, with coefficient of determination (R²) values of 0.9877 

for electrolyte temperature, 0.9375 for cryolite ratio, and 0.916 for ledge area, underscoring its reliability 

despite inherent model simplifications. 
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Introduction 

The Hall-Héroult method has been the 

dominant method of primary aluminium 

production since its invention in 1886 [1]. In this 

method, alumina (aluminum oxide) is 

electrolytically reduced to metallic aluminum in a 

molten cryolite-based electrolyte.  The efficient 

and stable operation of large-scale aluminum 

reduction cells is critical to maintaining energy 

efficiency, reducing environmental impact, and 

ensuring economic viability in the highly 

competitive global aluminum market. Increased 

energy consumption, high production costs, and 

potential environmental concerns are caused by 

many factors, including problems in cell operation 

[2]. 

However, achieving stable operation is 

challenging due to complex interdependencies 
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among thermal, chemical, and operational factors, 

particularly the dynamic behavior of the ledge—a 

frozen electrolyte layer lining the cell’s inner 

walls and bottom [3]. In addition to thermal 

insulation, the flange plays a vital role in 

physically protecting the heat-resistant lining of 

the carbon-based sidewall cell from aggressive 

corrosion and chemical attack by highly corrosive 

electrolyte molten, thereby prolonging the service 

life of the cell [4]. Furthermore, the shape and 

extent of the edge significantly affect the 

distribution of electric current within the cell, 

impacting both the efficiency of the current and 

the overall performance of the process [5]. Thus, 

maintaining a stable and appropriately shaped 

ledge is a delicate balancing act, requiring careful 

control of numerous operational parameters. The 

cryolite ratio and electrolyte temperature are 

crucial parameters influencing electrolyte 

properties and cell performance [6]. The 

aluminum electrolytic cell is based on a perforated 

anode and a shaped cathode as shown in Fig.1. 

Ledge stability depends on precise control of 

operational parameters, notably electrolyte 

temperature and cryolite ratio (NaF/AlF₃ molar 

ratio) [7]. 

Fig. 1. The structural design of a current 

aluminum reduction cell [7] 

Deviations in these parameters can lead to ledge 

overgrowth or melt back, causing thermal 

imbalances, increased energy use, and cell failure 

[8]. 

Existing predictive tools rely on physics-based 

models (e.g., finite element analysis [9]) that 

simulate multi-physics interactions (thermal, 

electrical, chemical). While accurate, these 

models demand exhaustive inputs, material 

properties, boundary conditions, real-time sensor 

data, and significant computational resources, 

often leading to computational times of hours 

or even days, severely limiting their practical 

usability for rapid diagnostics or real-time 

operator training [10]. Furthermore, they lack 

integration of time-dependent empirical trends, a 

critical gap given that ledge dynamics evolve 

predictably with cell age [11, 12]. 

The main aims of this study are: 1) develop 

a Days-Only Input tool to predict ledge behavior 

(temperature, cryolite ratio, area) and visualize 

shape evolution using only operational time (days 

since startup), 2) establish empirical 

models correlating ledge dynamics with cell age, 

validated against industrial data, and 3) 

democratize access to ledge analysis for 

education, training, and preliminary process 

optimization. 

The novelty in this paper eliminates complex 

inputs, such as boundary conditions, required by 

prior tools [8,9], allowing for rapid predictions of 

less than 10 seconds. It combines quantitative 

predictions (R² > 0.91) with qualitative 

visualization, filling a gap in previous studies. 

Additionally, it provides teachers and operators 

with an intuitive platform to explore temporal 

edge behavior, reducing reliance on expensive, 

high-precision simulations. 
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Materials and Methods 

Data Source 

The data used in this study were derived from 

three industrial aluminum reduction cells 

(numbers 617, 619, and 634) [11]. The dataset 

comprised two primary components: (i) charts 

illustrating the electrolyte temperature (°C) and 

average ledge area (m2) (Fig. 2), and the cryolite 

ratio (Fig. 3) for these cells throughout 

approximately 150 to 281 days, respectively from 

cells start-up, and (ii) 10 pre-stored images of Cell 

617’s ledge at 15-day intervals (15–150 days) 

[11]. 

 
Fig. 2. Electrolyte temperature and average ledge 

area of cells 617, 619, and 634 on different days 

from their start-up [11].  

 
Fig. 3. Relationship between cryolite ratio with 

time during 281 days from the cells' startup [11]. 

Python-Based Time-Based Ledge Behavior 

Prediction Tool 

A user-friendly software tool was developed 

using Python 3.10, with Tkinter for GUI design, 

enabling intuitive user interaction[13] and Pillow 

(PIL) for image handling[14]. This tool 

implements a Days-Only Input approach, 

requiring only the number of days from cell start-

up as user input. The program's functionality is as 

follows: upon user input of "days from start-up" 

into a designated entry field, the software 

performs the following steps automatically: (i) 

estimates the electrolyte temperature and cryolite 

ratio via empirical functions (described in section 

2.3), (ii) identifies the nearest matching ledge 

shape image from the pre-stored database (15–150 

days, 15-day intervals) [11] and displays the 

corresponding pre-stored ledge shape image in the 

GUI window, and (iii) calculates and displays the 

predicted ledge area based on the input days and 

the estimated electrolyte temperature and cryolite 

ratio. As illustrated in Fig. 4, the GUI features a 

simplified interface with the "Days from Start-up" 

input field, a "Predict Ledge Shape" button, and 

output areas for the visualized shape, estimated 

electrolyte temperature, estimated cryolite ratio, 

and predicted ledge area. The "Save Image" 

functionality allows users to export the visualized 

ledge shape for further use or documentation. The 

program logic primarily focuses on predicting 

ledge behavior as a function of time, making it a 

readily usable tool for time-dependent analysis. 

Fig. 4. A screenshot of the program interface 
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Mathematical Functions for Time-Based 

Estimations and Ledge Area Prediction 

To enable Days-Only Input functionality, 

empirical mathematical models were developed to 

estimate electrolyte temperature (T(t) and cryolite 

ratio (CR(t) as functions of operational time. 

These models were derived from digitized 

experimental data (Figs. 1 and 2) using a web-

based tool [15], which converted graphical trends 

into numerical datasets. 

The empirical estimation function for 

electrolyte temperature as a function of 

operational days is: 

T(t) = m * t + c                                                (1) 

Digitized T(t) data from Figure 1 revealed a 

linear relationship with operational days. 

A piecewise linear function was selected to 

capture this behavior. Parameters (m,c) were 

optimized using nonlinear least-squares 

regression via SciPy’s curve fit function. The 

model achieved a coefficient of determination 

(R2) of 0.9877, indicating excellent agreement 

with experimental data. 

Similarly, an empirical function for cryolite 

ratio as a function of operational days was derived 

from the digitized data of Fig. 2. Observing the 

trend in this data, the exponential decay 

function was chosen as an appropriate empirical 

model. The general form of this function is 

illustrated by Equation (2): 

 CR(t) = A. e^(-t / tau_CR) + B                   (2) 

Curve fitting techniques were applied to the 

digitized data to determine the A, tau_CR, and B 

values. The estimated function exhibited an R2 

value of 0.9375. 

Ledge area (A) was modeled as a temperature- 

and cryolite-dependent process with saturation 

behavior, combining an exponential growth-to-

limit framework and a thermal scaling term. The 

parameters for this function were determined 

through curve fitting to the digitized ledge area 

data from Figure 1. The general form of this 

function is given by Equation (3): 

A (t, T(t), CR(t)) = (1+k *(T(t)-T_ref)) 

*[A_max_base*(1-e^(-t/tau_area)) + A_0]   (3) 

Parameter optimization using digitized ledge 

area data (Figure 1) yielded an R2 of 0.91606, 

reflecting high predictive accuracy under 

combined thermal and chemical dynamics. 

Results 

Python-Based Time-Based Ledge Behavior 

Prediction Tool 

The developed Python program with Days-

Only Input provides a simplified tool for 

predicting ledge behavior. Upon entering the day 

from start-up as shown in Fig. 4 and clicking the 

"Predict Ledge Shape" button, the program 

automatically estimates and displays the 

electrolyte temperature, cryolite ratio, predicted 

ledge area, and the corresponding ledge shape 

image. Fig. 5 illustrates an example output for an 

input of 45 days, demonstrating the program's 

ability to provide a comprehensive time-based 

prediction of ledge behavior. The "Save Image" 

button functionality is retained, allowing users to 

export the visualized ledge shape. 

Model Validation and Fitted Functions 

Qualitative and quantitative assessments of the 

model's performance against the experimental 

data were used to validate the accuracy and 

reliability of these derived empirical functions. 

Visual inspection was performed by plotting the 

predicted values from each empirical function 

(T(t), CR(t), and A (t, T, CR)) alongside the 

corresponding digitized experimental data points. 
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As illustrated in Fig. 6, these graphical 

comparisons enabled a qualitative assessment of 

the fitted curves’ alignment with the observed 

trends, patterns, and potential deviations in the 

data. Strong agreement between the empirical 

functions developed in this study and the training 

data. Residuals were calculated as the difference 

between the observed experimental value and the 

model's predicted value for each data point. 

Residual analysis confirmed acceptable 

deviations (approximately ±2.5% for temperature 

estimations, ±7% for cryolite ratio estimations, 

and ±8% for ledge area predictions, relative to the 

range of the training data). 

Fig. 5. Example outputs for input 45 days. 

Fig. 6. Visual validation of the empirical models 

for cryolite ratio, ledge area, and temperature as 

functions of time. 

 

Quantitative evaluation of the goodness-of-fit 

was conducted using statistical metrics. The 

R2 was calculated for each empirical function for 

its respective digitized dataset (electrolyte 

temperature vs. time, cryolite ratio vs. time, and 

ledge area vs. time & temperature). R² values 

of 0.9877 for electrolyte temperature, 0.9375 for 

cryolite ratio, and 0.916 for ledge area, 

respectively.  The R2 values are closer to 1, 

indicating a better fit. 

Discussion 

Practical Utility and Industrial Relevance 

The Days-Only Input tool addresses a critical 

gap in aluminum cells by translating complex 

ledge dynamics into an accessible, time-

dependent framework. Unlike physics-based 

models (e.g., ANSYS [8]) ANSYS requiring >20 

inputs (material properties, boundary conditions) 

and hours of computational time, this tool reduces 

input complexity to a single parameter 

(operational days) and delivers predictions in <10 

seconds. This democratizes access for operators in 

resource-limited settings, enabling rapid 
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diagnostics (e.g., identifying thermal imbalances) 

without specialized software. 

The tool’s ability to visualize ledge thickening 

over time (Fig. 5) aligns with empirical 

observations from industrial case studies [16], 

where ledge overgrowth beyond 120 days 

increased energy consumption by ~12% [17]. By 

enabling proactive adjustments (e.g., anode height 

modifications), the tool could mitigate such 

inefficiencies, potentially saving >$30,000 

annually per cell in energy costs [18]. 

Limitations and Model Robustness 

While the empirical models for temperature 

(R² = 0.9877), cryolite ratio (R² = 0.9375), and 

ledge area (R² = 0.8557) show strong correlations 

with the training data, their reliance on historical 

datasets from three cells introduces inherent 

biases. For example, the exponential decay model 

for cryolite ratio assumes uniform bath chemistry, 

which may not hold in cells with fluctuating 

alumina purity or anode effects [4]. Similarly, the 

ledge area model’s temperature sensitivity 

coefficient [20] oversimplifies the nonlinear 

relationship between thermal gradients and ledge 

growth observed in multi-physics simulations [9]. 

These simplifications limit the tool’s predictive 

accuracy in non-standard operating conditions, 

such as cells with atypical refractory designs or 

irregular thermal profiles. 

Comparative Advantages Over Existing 

Approaches 

The tool’s Days-Only Input approach offers 

distinct advantages over commercial software, as 

shown in Table 1. This simplicity enables iterative 

hypothesis testing (e.g., *“How does a 30-day 

startup delay affect ledge area?”*) without 

advanced expertise, aligning with Industry 4.0 

demands for agile, interpretive tools [21]. While 

high-fidelity models remain essential for 

precision, this tool complements them by 

providing rapid preliminary insights. 

Table 1. Comparison between the Days-Only 

Input approach and commercial software 

Broader Implications for Industry and 

Academia 

In educational contexts, this tool bridges the 

gap between theoretical lectures on the Hall-

Héroult process and hands-on visualization of 

ledge dynamics. For instance, instructors can 

demonstrate how prolonged operation (e.g., 150 

days) leads to ledge overgrowth, increasing the 

risk of sidewall erosion, concepts often abstracted 

in textbooks [7].  For industry, the tool’s 

predictions could inform preventive maintenance 

schedules, such as optimizing anode adjustments 

to stabilize ledge morphology before thermal 

imbalances occur. However, its utility for 

operational decision-making remains contingent 

on supplementary data (e.g., real-time 

temperature sensors) to validate predictions. 

Metric This Tool ANSYS [8] 

Input 

parameters 
1 (Days) 

20+ 

(Material, 

boundary) 

Computational 

time 

<10 

seconds 
2–5 hours 

Educational 

accessibility 

GUI-

driven, no 

CFD 

expertise 

Requires 

CFD 

training 
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Conclusion 

This study successfully developed a Days-

Only Input Python tool for predicting ledge 

behavior in aluminum reduction cells, addressing 

critical gaps in accessibility and computational 

efficiency. By requiring only operational time 

(days since startup) as input, the tool democratizes 

ledge analysis, enabling rapid estimation of 

electrolyte temperature (R2=0.9877), cryolite 

ratio (R2=0.9375), and ledge area (R2=0.916) 

alongside visualizations of shape evolution. Key 

contributions include:  

eliminate the reliance on complex inputs (e.g., 

boundary conditions) required by physics-based 

models, reducing prediction time from hours to 

seconds, combining quantitative predictions with 

qualitative visualizations, and bridging theoretical 

education and industrial training. It can be further 

enhanced by incorporating more sophisticated 

models and user-adjustable input parameters in 

future iterations, contingent upon the availability 

of more comprehensive and detailed experimental 

data capturing the multivariate dependencies of 

ledge formation
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Nomenclature and Abbreviations 

Term/Symbol Definition 

t Time (days) 

T Electrolyte Temperature (°C) 

T(t) Estimated Electrolyte Temperature (°C) at time t 

CR Cryolite Ratio (unitless) 

CR(t) Estimated Cryolite Ratio at time t (unitless) 

A(t, T(t), CR(t)) 
Predicted Ledge Area (m²) at time t, estimated temperature T(t), and 

estimated cryolite ratio CR(t) 

m Parameter m for temperature function 

c Parameter c for temperature function 

A Parameter A for cryolite ratio function 

tauCR Parameter tauCR for cryolite ratio decay (days) 

B Parameter B for cryolite ratio function 

k Parameter k for temperature sensitivity 

Tref Parameter Tref (Reference Temperature) (°C) 

A max,base Parameter Amax,base for ledge area function 

tauarea Parameter tauarea for ledge area growth (days) 

A0 Parameter A0  for ledge area function 

 


