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Abstract:

Complete synchronization scheme was explored in this work. In this approach we make use of the
nonlinear active controller to ensure the synchronization between the master and slave systems, with
identical parameters and initial conditions, to ensure reliable and stable state of the synchronization. The
approach demonstrates a robust process, as the active controller being designed ensures the two identical
systems synchronize over time. Tested against mismatched initial conditions we were able to verify the
sensitivity of the Lorenz system towards initial conditions, the phase portrait and butterfly effect of the
system was also illustrated to affirm the validity of this claim, the method demonstrate resilience towards
mismatching initial conditions, giving room to areas of possible application such as securing
communication, signal processing and control theory.
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Introduction

In today’s world, digital communication has
become an integral part of every society, a large
amount of data is being shared every day, be it
personal information, transactions in finance, or
the sharing of confidential messages. Due to
such information circulation, individuals, with

governmental and non-governmental
organizations face severe threats from
unauthorized par- ties that intercept the

information unlawfully, putting the privacy of
the parties concerned in jeopardy. Conventional
techniques or algorithms such as hashing,
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blowfish, and so on are being cracked with the
help of quantum algorithms [3].

1.1 Chaos and Dynamical Systems

111 Nonlinear Dynamics of a
System

The dynamics of any given system are
significantly impacted by the non- linearity of
the terms in the systems. Nonlinear equations, as
opposed to linear equations, permit for discrete
solutions for a periodic oscillations in the system
specifically concerning equilibrium. This makes
solving nonlinear equations much more difficult
analytically, otherwise almost impossible
without the use of numerical or semi-analytical
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methods. Therefore, to achieve approximate
answers, numerical methods are used,
furthermore, geometrical patterns and reasoning
are shown to be highly successful in obtaining a
qualitative knowledge of the behavior of
solutions[4]. Differential equations (DES) have
to do with the evolution of dynamical systems in
a time-continuous domain. This so-called
evolution is expressed by:
X' = f(x) (1)

Where f denotes the function of flow while x
is the flow variable.

1.1.2 Phase Space and criteria of stability

A dynamical system is defined and further
described by the process of its own evolution
(differential equations(DEs) and difference
equations), ex- plains how a given point X
changes within a phase space with respect to the
time in the system denoted by “t”, and its phase-
space (the possible collection of all states of x of
the system). Here, we’ll use an arbitrary
continuous dynamical system as an example to
help grasp the basic concept. A general
dynamical system can fully be written as a set of
linear and nonlinear ordinary differential
equations. let us expand upon the previous
equation given in Eqg. (1)

Xy = 1 (X1, X3, X3, oo, Xp), - Xp = (X1, X2, X3, ve) Xp)-

Since the general form of any dynamical
system’s phase space consists of x-coordinates
x1,x2,x3,....,xn, we can recall back to Eq (1)
as a usual n- dimensional system of differential
equation or an nth-order system due to its
intrinsic n-dimensionality. Subsequently, we
know n represents the dimension of the phase
space of the system. In the phase space being
studied, solutions of the system (x1,x2,...,xn)
in particular is corresponding to some point
traveling or moving on a curve within the
system’s plane; this is called a trajectory, and a
phase portrait is the representative collection of
the tra- jectories along which the points move
about. We can claim that the entirety of the
phase space is full with trajectories and points
moving around the trajectories, as each point in
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the space can be used as the initial condition
necessary for the dynamical system. The
equilibrium (or constant) solutions, or critical (or
fixed) points, are those for points for which f(x)
in Eq (1) is zero. The stability of the system is
defined based on the Lyapunov functions
negative definite. given a chosenk > 0.

1.1.5 Chaos with Lyapunov Exponent

Chaos can also be identified by Lyapunov
exponents.[5] Based on its value, the Lyapunov
exponent is a systematic technique that can be
used to assess how a dynamical system behaves
in a chaotic or non-chaotic mannerism.
Regarding parameter fluctuations (constantly
increasing or decreasing), the vast majority of
dynamical systems studied typically display the
following types of solutions: stable or otherwise
fixed, periodic and sometimes quasi- periodic,
chaotic (unpredictable), unstable or typically
divergent. In one- dimensional systems, chaotic
behavior is usually indicated by a positive
Lyapunov’s exponent value, whereas periodic
orbit behavior is specified by a negative
Lyapunov’s exponent value, and marginally
stable orbit is indicated by a zero Lyapunov’s
exponent value [10].

1.2 Aim and Objectives

We aim to come up with a safe
communication system by utilizing the chaotic
nature of a Lorenz system, with an emphasis on
studying encryption and decryption processes
for a better protection against cyber attacks.

OBJECTIVES

» To analyze the theoretical aspects of Lorenz
system and it’s chaotic properties for application
for encryption and decryption.

* To design an encryption-decryption
framework utilizing complete chaos
synchronization scheme with active control with
identical Lorenz systems.

Conclusion

Numerous studies have explored chaotic
system synchronization and its potential for
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secure communication. Despite these advances,
significant research gaps remain particularly
in developing more robust, noise-resilient, and
adaptable encryption schemes that can
withstand real-world variability and cyber
threats. This literature review highlights key
contributions, limitations, and the evolving
landscape of chaos-based secure communication
systems.

Over the past few decades, chaotic systems
have been widely applied in diverse domains,
including finance, signal processing,
epidemiological modeling, and control systems.
One key application area is secure
communication, where synchronization of
chaotic states between a transmitter and a
receiver enables effective encryption and
decryption. Chaotic synchronization allows
these systems to securely transmit data,
capitalizing on the sensitive dependence on
initial conditions to prevent unauthorized access.

Recent research efforts have focused on
enhancing  synchronization strategies and
encryption efficiency. One study demonstrated
that chaotic synchronization can significantly
reduce the impact of measurement noise by
using controllers to secure communication. Their
results showed improved robustness and
message recovery even under high-noise
conditions [2].

Another notable contribution introduced a
fractional-order chaotic system with hidden
attractors [13]. Fractional calculus adds
complexity to system dynamics, making them
more unpredictable and secure. These systems
are harder to intercept and synchronize without
precise knowledge of their parameters, thereby
strengthening encryption capabilities.

In [8], the authors introduced an innovative
fusion of brain emotional fuzzy control
(BEFCC) and chaos synchronization for audio
encryption and decryption. This novel
integration of emotional intelligence and chaotic
systems expands the scope of secure
communication beyond traditional text and

image data, paving the way for secure
multimedia transmissions.

Further, a PID controller coupled with a
quasi-sliding mode controller (QSMC) was used
to synchronize master-slave Lorenz systems for
loT-based encrypted environmental signal
transmission [6]. The study highlighted the
practical implementation of chaos-based security
in sensing nodes, although the approach
demands high precision in maintaining system
synchronization.

Another approach utilized the Sprott
master-slave chaotic system with a sliding
mode controller designed using a Lyapunov-
based method to ensure stability and robustness
[14]. The simulation results demonstrated that
synchronization error converges to zero over
time, indicating complete synchronization even
in the presence of system disturbances.

The Lorenz system, originally designed for
meteorological modeling, has also been widely
adopted in secure communication systems. By
synchronizing two Lorenz systems (master and
slave), secure data transmission is achieved
through shared chaotic dynamics [7]. Modern
research in this area emphasizes designing
robust controllers—such as active, adaptive,
and sliding mode controllers—to maintain
synchronization regardless of noise,
perturbations, or parameter mismatches [11].

Adaptive control techniques, in particular,
adjust system parameters dynamically to counter
real-world uncertainties, enhancing
synchronization robustness and reliability [12].
These controllers are often grounded in stability
theory to ensure phase and amplitude
synchronization while minimizing
synchronization error.

Additionally, encrypted messages are often
embedded using chaotic masking, where the
message is obscured within a chaotic signal and
only recoverable by an identical system with
matched parameters [1]. This approach offers
high resistance to interception, as even minor
parameter deviations can prevent successful
decryption.
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Research gap
Despite the promising outcomes of prior
studies, several challenges persist:

1. Many synchronization schemes struggle to
maintain robustness under high noise levels
and parameter mismatches, especially in
real-time applications.

2. Existing approaches often lack adaptability
to changing external conditions, limiting their
practical deployment.

3. The convergence behavior and
performance benchmarks of these schemes
are not comprehensively analyzed or
standardized across studies.

4. Most studies focus on specific applications
(e.g., text or audio encryption), but broader
evaluations for secure multimedia, loT, or
critical infrastructure communication remain
under explored.

5. There is a need for simplified yet effective
control schemes that reduce computational
complexity while maintaining
synchronization accuracy.

Current work

In this study, we propose and implement a
nonlinear active control scheme to achieve
complete synchronization between two
identical Lorenz chaotic systems. Although the
systems share identical structural dynamics, they
are initialized with different state conditions,
allowing us to evaluate the controller’s
performance under parameter mismatches. A
control input is designed based on Lyapunov
stability theory, ensuring the synchronization
error converges asymptotically to zero.
Theoretical analysis is supported by numerical
simulations, which demonstrate the
effectiveness and robustness of the proposed
method.  The  results  confirm  stable
synchronization, even in the presence of initial
mismatches, thereby underscoring the method’s
viability for real-world applications such as
secure communication, signal processing, and
control systems. The inherent chaotic
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properties of the Lorenz system, particularly
its sensitivity to initial conditions, further
enhance the potential of this approach for
encryption and cyber-m defense mechanisms.

Methodology

Let the master system be given as

X' = Ax + ¢(x) (2

be the general form of the master system,
with x = (x1,x2...xn)T as the state vector
variable. In this system A is the linear part while

¢ : Rn - Rn

is considered as nonlinear part of the system.
Consider a slave (a Lorenz system)system that is
identical to the master system added with a
control function.

y' = By +
Y(y) + u®xy) 3

In this system y = (y1,y2...yn)T is the state
vector, while B is the linear part of the system,
Y : Rn — Rn is the nonlinear part. u(x,y) is
the nonlinear control to be designed that will
ensure the slave system synchronize with the
master system overtime.

Since the master and slave system are
identical then both linear and non- linear part of
the system are equal i.e. A =B and ¢ = y, where
x and y served as the state vectors of the two
identical  systems.  Now, defining the
synchronization error, e(t) as

e( = y(® £ x(t)

The operation in this error to be used depends
on the synchronization scheme under
consideration. For stability the Lyapunov
function can be defined as

V(e) = %(eTe)

If the function V (e) is positive definite, then
with a suitable controller u(x,y), we can have
that the function derivative V' is negative
definite. Thus by Lyapunov stability criteria,
synchronization is achieved between the two
system.

Complete Synchronization Scheme
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In this scheme the difference of the state-
vectors of the two Lorenz systems synchronized
tends to zero overtime. The master system is
said to be in complete synchronization with the
slave system if

limjle®Il = lim[ly(t) —x(®)]l = 0

Where ||.|| is considered as the euclidean
norm. Assuming the synchronization error is
ee=y;—x;i=123. the synchronization
error dynamics is then taken as

e’ =By + Y(y) +uxy) — Ax — ¢(x)

Clearly the master and slave system will
achieve complete synchronization if u(x,y) is
chosen as:

u(x,y) = =By — Y(y) + Ax + ¢p(x) — ke

Where k is the control gain.

Analysis, Result and Discussion
(Master-Slave  System  with  necessary
parameters)
Consider the Master System
X1 = a(Xz — X1)
X = BX1 — Xz — X1X3
X5 = —YX3 + X1X;
Where, x4,x,,x3 are the state variables and
a, B,y are the parameters.
Slave System
yi=a(yz —y) +u
y2 = By1 — Y2 —y1¥z + Uz
Y3 = —Yys + y1y2 + U3
We added u1l,u2,u3(control inputs) which
are going to be designed as control laws that will
enable the slave system to synchronize with the
master system. These controllers enable the
systems to behave in a matching trajectory in
identical manner overtime. In order to
synchronized the systems, we defined the error
vector e(t) = (e (t), e, (t), e3(t) Thy
ej =y — Xxj,thenfori=1,2,3
€1 =Y¥1 X1
€2 =Y2— X3
€3 =Yy3 — X3
To achieve complete synchronization,ei —
0 fori=1, 2, 3. This implies that yi — xi in all
instances, thus the master-slave system

synchronizes. Substituting the given values of
the derivatives in the master-slave model into
the error dynamics e’, we have;
e1=y1 — X
= a(yz —y1) +ug — [a(xz — x1)]
er =aly; —y1) +us
Consider e,:
€ =y2 —Xp
= By1 —y2 —Y1¥z + Uz — Bxy + X3 + X1X3
=B(y1 —x1) — (y2 — Xx2) — (y1¥3 — X1X3)
~ ey =Per — ey — (V1yz — X1X3) + Uy
Similarly for es:
e3 = yesz + (Y1¥2 —X1X2) + U3

Now we need to design the control inputs
ul,u2,u3 that will make all the errors converge
tozeroi.eei — 0, for all i. For easier set up lets
set the inputs to be opposite of the nonlinear
terms of the system, this will bring about
negative feedback for all the errors; this choice
will make the function to be negative definite.

First input(control):

To impose a negative feedback on the
synchronization errors ie. for e} = —kye;
where k; > 0 (constant), from error dynamics:

e; =ale; —e) tuy
Chooseu; = —a(e, —e;) —kyeq
= e; = ale; —ey) + (—ale; —e;) —kyeg)
= a(e; —e;) —ale; —eg) — ke
= —kje;.
Second input (control):
For k, > 0, the error dynamics:
ez = Be; —e; — (y1y3 — X1X3) + U
Choosing u, = —fe; + e, + (y1y¥3 — X1X3)
—kye,
so that we have e, = —k,e,.

Third input (control):

Following the same identical procedure as in
the first two control inputs of the system, we
want:

e3 = —kzesfork > 0
= e3 =ves + (y1y2 — X1Xz) + u3
Choosing uz = —ye; — (y1y2 — X1X2) — kzes
so that e; = —kse; forks >0
The error dynamics are reduced to:
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e1 = —kieq
e; = —kye,
e; = —kse;

For stability, we define the Lyapunov
function V(e) as
V(e) = 5 (e + ¢} + )
differentiating,
V(e) = eje; + eye; +eze;
Putting values of e; fori = 1,2,3:

V' = —k,e? — k,e% — ksel, for k; >0

This function is a negative definite. Hence,
we say that by Lyapunov Theory of Stability, the
dynamics are asymptotically stable and converge
exponentially to  zero, thus complete
synchronization is achieved.

Example (Numerical simulation):

Let us wuse simulation (numerical) to
systematically verify the result of the master-
slave chaotic synchronization. Use initial
conditions x0 = (x1,x2,x3) = (3,-4,2) for the
master system and y0 = (yl,y2,y3)=
(—10,-11,5) for the slave system, the error
vector conditions as ei = (y0 — x0). Suppose
that k has an invariant value i.e. k1 =k2=k3 =1
(chosen). After applying the controllers, the state
variable’s time analysis is presented in the
succeeding figure.

Sn(nm.n. tion of xt and y

ati 1 31 !ni’ ! t‘ i xf‘
i i E’ i
&&miw‘iwww‘ﬁw

Synchronization of x3 and y3

e“ | l llln 1 |l| u‘ ul I l ln‘ (TR 1
ot o o RN \’”\"‘10

The graph shows how the state variables of

the identical master-slave systems synchronized
(complete synchronization) over time. The first
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subplot represents the state variables (x1 and y1)
, the second subplot shows (x2 and y2), and the
third subplot displays (x3 and y3).

The first subplot shows the analysis of time
series of the synchronized state of the first
chaotic variables for both the master-slave
system. The second subplot shows the analysis
of time series of the second corresponding
chaotic variables between the two identical
systems. Likewise the third subplot is the series
analysis of the third corresponding variable
between the two identical systems.

Conclusion

This research article demonstrated the
successful  implementation  of  complete
synchronization between two identical systems
using active control. The systems shared
identical linear and nonlinear components,
differing only in their state variables. Active
control was employed to achieve
synchronization over time, and Lyapunov
stability theory was applied to verify the stability
of the synchronized state. The results confirmed
effective synchronization, and the potential
application of this method in secure
communication was discussed in the literature
review. Furthermore, the method's robustness
was validated under parameter mismatches,
underscoring its viability for real-world
applications. This approach offers promising
potential in secure and efficient communication
systems, contributing a novel strategy for
countering cyber attacks.
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