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Abstract: 

Complete synchronization scheme was explored in this work. In this approach we make use of the 

nonlinear active controller to ensure the synchronization between the master and slave systems, with 

identical parameters and initial conditions, to ensure reliable and stable state of the synchronization. The 

approach demonstrates a robust process, as the active controller being designed ensures the two identical 

systems synchronize over time. Tested against mismatched initial conditions we were able to verify the 

sensitivity of the Lorenz system towards initial conditions, the phase portrait and butterfly effect of the 

system was also illustrated to affirm the validity of this claim, the method demonstrate resilience towards 

mismatching initial conditions, giving room to areas of possible application such as securing 

communication, signal processing and control theory. 
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Introduction 

In today’s world, digital communication has 

become an integral part of every society, a large 

amount of data is being shared every day, be it 

personal information, transactions in finance, or 

the sharing of confidential messages. Due to 

such information circulation, individuals, with 

governmental and non-governmental 

organizations face severe threats from 

unauthorized par- ties that intercept the 

information unlawfully, putting the privacy of 

the parties concerned in jeopardy. Conventional 

techniques or algorithms such as hashing, 

blowfish, and so on are being cracked with the 

help of quantum algorithms [3]. 

1.1 Chaos and Dynamical Systems 

1.1.1 Nonlinear Dynamics of a 

System 

The dynamics of any given system are 

significantly impacted by the non- linearity of 

the terms in the systems. Nonlinear equations, as 

opposed to linear equations, permit for discrete 

solutions for a periodic oscillations in the system 

specifically concerning equilibrium. This makes 

solving nonlinear equations much more difficult 

analytically, otherwise almost impossible 

without the use of numerical or semi-analytical 
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methods. Therefore, to achieve approximate 

answers, numerical methods are used, 

furthermore, geometrical patterns and reasoning 

are shown to be highly successful in obtaining a 

qualitative knowledge of the behavior of 

solutions[4]. Differential equations (DEs) have 

to do with the evolution of dynamical systems in 

a time-continuous domain. This so-called 

evolution is expressed by: 

                                   (1) 

Where   denotes the function of flow while   

is the flow variable. 

1.1.2 Phase Space and criteria of stability 

A dynamical system is defined and further 

described by the process of its own evolution 

(differential equations(DEs) and difference 

equations), ex- plains how a given point x 

changes within a phase space with respect to the 

time in the system denoted by ”t”, and its phase-

space (the possible collection of all states of x of 

the system). Here, we’ll use an arbitrary 

continuous dynamical system as an example to 

help grasp the basic concept. A general 

dynamical system can fully be written as a set of 

linear and nonlinear ordinary differential 

equations. let us expand upon the previous 

equation given in Eq. (1) 

 
 

                      
 

                     

 

Since the general form of any dynamical 

system’s phase space consists of x-coordinates 

                , we can recall back to Eq (1) 

as a usual n- dimensional system of differential 

equation or an nth-order system due to its 

intrinsic n-dimensionality. Subsequently, we 

know n represents the dimension of the phase 

space of the system. In the phase space being 

studied, solutions of the system                

in particular is corresponding to some point 

traveling or moving on a curve within the 

system’s plane; this is called a trajectory, and a 

phase portrait is the representative collection of 

the tra- jectories along which the points move 

about. We can claim that the entirety of the 

phase space is full with trajectories and points 

moving around the trajectories, as each point in 

the space can be used as the initial condition 

necessary for the dynamical system. The 

equilibrium (or constant) solutions, or critical (or 

fixed) points, are those for points for which f(x) 

in Eq (1) is zero. The stability of the system is 

defined based on the Lyapunov functions 

negative definite. given a chosen      . 

1.1.5 Chaos with Lyapunov Exponent 

Chaos can also be identified by Lyapunov 

exponents.[5] Based on its value, the Lyapunov 

exponent is a systematic technique that can be 

used to assess how a dynamical system behaves 

in a chaotic or non-chaotic mannerism. 

Regarding parameter fluctuations (constantly 

increasing or decreasing), the vast majority of 

dynamical systems studied typically display the 

following types of solutions: stable or otherwise 

fixed, periodic and sometimes quasi- periodic, 

chaotic (unpredictable), unstable or typically 

divergent. In one- dimensional systems, chaotic 

behavior is usually indicated by a positive 

Lyapunov’s exponent value, whereas periodic 

orbit behavior is specified by a negative 

Lyapunov’s exponent value, and marginally 

stable orbit is indicated by a zero Lyapunov’s 

exponent value [10]. 

 

1.2 Aim and Objectives 

We aim to come up with a safe 

communication system by utilizing the chaotic 

nature of a Lorenz system, with an emphasis on 

studying encryption and decryption processes 

for a better protection against cyber attacks. 

 

OBJECTIVES  

• To analyze the theoretical aspects of Lorenz 

system and it’s chaotic properties for application 

for encryption and decryption. 

 • To design an encryption-decryption 

framework utilizing complete chaos 

synchronization scheme with active control with 

identical Lorenz systems. 

Conclusion 

Numerous studies have explored chaotic 

system synchronization and its potential for 
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secure communication. Despite these advances, 

significant research gaps remain particularly 

in developing more robust, noise-resilient, and 

adaptable encryption schemes that can 

withstand real-world variability and cyber 

threats. This literature review highlights key 

contributions, limitations, and the evolving 

landscape of chaos-based secure communication 

systems. 

Over the past few decades, chaotic systems 

have been widely applied in diverse domains, 

including finance, signal processing, 

epidemiological modeling, and control systems. 

One key application area is secure 

communication, where synchronization of 

chaotic states between a transmitter and a 

receiver enables effective encryption and 

decryption. Chaotic synchronization allows 

these systems to securely transmit data, 

capitalizing on the sensitive dependence on 

initial conditions to prevent unauthorized access. 

Recent research efforts have focused on 

enhancing synchronization strategies and 

encryption efficiency. One study demonstrated 

that chaotic synchronization can significantly 

reduce the impact of measurement noise by 

using controllers to secure communication. Their 

results showed improved robustness and 

message recovery even under high-noise 

conditions [2]. 

Another notable contribution introduced a 

fractional-order chaotic system with hidden 

attractors [13]. Fractional calculus adds 

complexity to system dynamics, making them 

more unpredictable and secure. These systems 

are harder to intercept and synchronize without 

precise knowledge of their parameters, thereby 

strengthening encryption capabilities. 

In [8], the authors introduced an innovative 

fusion of brain emotional fuzzy control 

(BEFCC) and chaos synchronization for audio 

encryption and decryption. This novel 

integration of emotional intelligence and chaotic 

systems expands the scope of secure 

communication beyond traditional text and 

image data, paving the way for secure 

multimedia transmissions. 

Further, a PID controller coupled with a 

quasi-sliding mode controller (QSMC) was used 

to synchronize master-slave Lorenz systems for 

IoT-based encrypted environmental signal 

transmission [6]. The study highlighted the 

practical implementation of chaos-based security 

in sensing nodes, although the approach 

demands high precision in maintaining system 

synchronization. 

Another approach utilized the Sprott 

master-slave chaotic system with a sliding 

mode controller designed using a Lyapunov-

based method to ensure stability and robustness 

[14]. The simulation results demonstrated that 

synchronization error converges to zero over 

time, indicating complete synchronization even 

in the presence of system disturbances. 

The Lorenz system, originally designed for 

meteorological modeling, has also been widely 

adopted in secure communication systems. By 

synchronizing two Lorenz systems (master and 

slave), secure data transmission is achieved 

through shared chaotic dynamics [7]. Modern 

research in this area emphasizes designing 

robust controllers—such as active, adaptive, 

and sliding mode controllers—to maintain 

synchronization regardless of noise, 

perturbations, or parameter mismatches [11]. 

Adaptive control techniques, in particular, 

adjust system parameters dynamically to counter 

real-world uncertainties, enhancing 

synchronization robustness and reliability [12]. 

These controllers are often grounded in stability 

theory to ensure phase and amplitude 

synchronization while minimizing 

synchronization error. 

Additionally, encrypted messages are often 

embedded using chaotic masking, where the 

message is obscured within a chaotic signal and 

only recoverable by an identical system with 

matched parameters [1]. This approach offers 

high resistance to interception, as even minor 

parameter deviations can prevent successful 

decryption. 
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Research gap 

Despite the promising outcomes of prior 

studies, several challenges persist: 

1. Many synchronization schemes struggle to 

maintain robustness under high noise levels 

and parameter mismatches, especially in 

real-time applications. 

2. Existing approaches often lack adaptability 

to changing external conditions, limiting their 

practical deployment. 

3. The convergence behavior and 

performance benchmarks of these schemes 

are not comprehensively analyzed or 

standardized across studies. 

4. Most studies focus on specific applications 

(e.g., text or audio encryption), but broader 

evaluations for secure multimedia, IoT, or 

critical infrastructure communication remain 

under explored. 

5. There is a need for simplified yet effective 

control schemes that reduce computational 

complexity while maintaining 

synchronization accuracy. 

 

Current work 

In this study, we propose and implement a 

nonlinear active control scheme to achieve 

complete synchronization between two 

identical Lorenz chaotic systems. Although the 

systems share identical structural dynamics, they 

are initialized with different state conditions, 

allowing us to evaluate the controller’s 

performance under parameter mismatches. A 

control input is designed based on Lyapunov 

stability theory, ensuring the synchronization 

error converges asymptotically to zero. 

Theoretical analysis is supported by numerical 

simulations, which demonstrate the 

effectiveness and robustness of the proposed 

method. The results confirm stable 

synchronization, even in the presence of initial 

mismatches, thereby underscoring the method’s 

viability for real-world applications such as 

secure communication, signal processing, and 

control systems. The inherent chaotic 

properties of the Lorenz system, particularly 

its sensitivity to initial conditions, further 

enhance the potential of this approach for 

encryption and cyber-m defense mechanisms. 

 

Methodology 

Let the master system be given as 

           (2) 

be the general form of the master system, 

with                   as the state vector 

variable. In this system A is the linear part while 

          

is considered as nonlinear part of the system. 

Consider a slave (a Lorenz system)system that is 

identical to the master system added with a 

control function. 

                                                         

                               (3) 

In this system y =                is the state 

vector, while B is the linear part of the system, 

           is the nonlinear part.        is 

the nonlinear control to be designed that will 

ensure the slave system synchronize with the 

master system overtime. 

Since the master and slave system are 

identical then both linear and non- linear part of 

the system are equal i.e. A = B and ϕ = ψ, where 

x and y served as the state vectors of the two 

identical systems. Now, defining the 

synchronization error,      as 

                 

The operation in this error to be used depends 

on the synchronization scheme under 

consideration. For stability the Lyapunov 

function can be defined as 

     
 

 
      

If the function       is positive definite, then 

with a suitable controller u(x,y), we can have 

that the function derivative    is negative 

definite. Thus by Lyapunov stability criteria, 

synchronization is achieved between the two 

system. 

 

Complete Synchronization Scheme 
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 In this scheme the difference of the state-

vectors of the two Lorenz systems synchronized 

tends to zero overtime. The master system is 

said to be in complete synchronization with the 

slave system if 

   
   

          
   

              

 

Where     is considered as the euclidean 

norm. Assuming the synchronization error is 

e                  the synchronization 

error dynamics is then taken as 

                          

Clearly the master and slave system will 

achieve complete synchronization if        is 

chosen as: 

                           

Where   is the control gain. 

 

Analysis, Result and Discussion 

(Master-Slave System with necessary 

parameters)  

Consider the Master System  

  
          

  
             

  
           

 

Where,          are the state variables and 

      are the parameters.  

Slave System 

  
             

  
                

  
              

 

We added         (control inputs) which 

are going to be designed as control laws that will 

enable the slave system to synchronize with the 

master system. These controllers enable the 

systems to behave in a matching trajectory in 

identical manner overtime. In order to 

synchronized the systems, we defined the error 

vector                         
 by  

                           

         

         

         

To achieve complete synchronization     

   for i = 1, 2, 3. This implies that         in all 

instances, thus the master-slave system 

synchronizes. Substituting the given values of 

the derivatives in the master-slave model into 

the error dynamics     we have; 

  
    

    
  

             [        ] 

  
              

Consider   : 

  
    

    
  

                            

                              

   
                        

Similarly for     

  
                     

Now we need to design the control inputs 

         that will make all the errors converge 

to zero i.e       , for all i. For easier set up lets 

set the inputs to be opposite of the nonlinear 

terms of the system, this will bring about 

negative feedback for all the errors; this choice 

will make the function to be negative definite. 

First input(control): 

To impose a negative feedback on the 

synchronization errors i.e. for   
        

where                  from error dynamics: 

  
              

                         

   
                            

                        

        

Second input (control): 

For    > 0, the error dynamics: 

  
                        

                               

      

                   
         

Third input (control): 

Following the same identical procedure as in 

the first two control inputs of the system, we 

want: 

  
               

   
                     

                                  

          
                 

The error dynamics are reduced to: 



Journal of Dynamics and Control  Vol. 22, Issue 4, 2024 

392 
 

{

  
       

  
       

  
       

 

For stability, we define the Lyapunov 

function      as 

     
 

 
   

    
    

   

differentiating, 

 
 
       

 

     
 

     
 

  

                   
 

               

        
      

      
              

This function is a negative definite. Hence, 

we say that by Lyapunov Theory of Stability, the 

dynamics are asymptotically stable and converge 

exponentially to zero, thus complete 

synchronization is achieved. 

Example (Numerical simulation): 

Let us use simulation (numerical) to 

systematically verify the result of the master-

slave chaotic synchronization. Use initial 

conditions x0 =          ) = (3,−4,2) for the 

master system and y0 =            = 

(−10,−11,5) for the slave system, the error 

vector conditions as                Suppose 

that k has an invariant value i.e. k1 = k2 = k3 = 1 

(chosen). After applying the controllers, the state 

variable’s time analysis is presented in the 

succeeding figure. 

 
The graph shows how the state variables of 

the identical master-slave systems synchronized 

(complete synchronization) over time. The first 

subplot represents the state variables (x1 and y1)

, the second subplot shows (x2 and y2), and the 

third subplot displays (x3 and y3). 

The first subplot shows the analysis of time 

series of the synchronized state of the first 

chaotic variables for both the master-slave 

system. The second subplot shows the analysis 

of time series of the second corresponding 

chaotic variables between the two identical 

systems. Likewise the third subplot is the series 

analysis of the third corresponding variable 

between the two identical systems. 

 

Conclusion 

This research article demonstrated the 

successful implementation of complete 

synchronization between two identical systems 

using active control. The systems shared 

identical linear and nonlinear components, 

differing only in their state variables. Active 

control was employed to achieve 

synchronization over time, and Lyapunov 

stability theory was applied to verify the stability 

of the synchronized state. The results confirmed 

effective synchronization, and the potential 

application of this method in secure 

communication was discussed in the literature 

review. Furthermore, the method's robustness 

was validated under parameter mismatches, 

underscoring its viability for real-world 

applications. This approach offers promising 

potential in secure and efficient communication 

systems, contributing a novel strategy for 

countering cyber attacks. 

 

 

 

 

 



Masood Alam, Muhammad Ali, Ismail Salisu & Khursheed Alam     

393 

 

References 

Adel A Bahaddad, Khalid Ali Almarhabi, and Sayed Abdel-Khalek. Image steganography technique 

based on bald eagle search optimal pixel selection with chaotic encryption. Alexandria Engineering Jour- 

nal, 75:41–54, 2023. 

Krishna K Busawon and Pousga Kabore. Disturbance attenuation us- ing proportional integral observers. 

International Journal of control, 74(6):618–627, 2001. 

Jiunn-Shiou Fang, Jason Sheng-Hong Tsai, Jun-Juh Yan, Li-Huseh Chi- ang, and Shu-Mei Guo. Secure 

data transmission and image encryption based on a digital-redesign sliding mode chaos synchronization. 

Math- ematics, 10(3):518, 2022. 

Jesu´s M Gonz´alez-Miranda. Synchronization and control of chaos: an introduction for scientists and 

engineers. World Scientific, 2004. 

Baghdadi Hamidouche, Kamel Guesmi, and Najib Essounbouli. Control and stabilization of chaotic 

systems using lyapunov stability theory. In 2023 International Conference on Electrical Engineering and 

Advanced Technology (ICEEAT), volume 1, pages 1–5. IEEE, 2023. 

Yi-You Hou. Synchronization of chaotic systems and its application in security terminal sensing node of 

internet of things. Micromachines, 13(11):1993, 2022. 

Muhammad Majid Hussain, Muhammad Siddique, Ziyad M Almo- haimeed, Romaisa Shamshad, Rizwan 

Akram, and Naeem Aslam. Synchronization of chaotic systems: A generic nonlinear integrated observer-

based approach. Complexity, 2021(1):4558400, 2021. 

Tuan-Tu Huynh, Chih-Min Lin, Duc-Hung Pham, Ngoc Phi Nguyen, Nguyen-Quoc-Khanh Le, Mai The 

Vu, Van-Phong Vu, and Fei Chao. 4-d memristive chaotic systems-based audio secure communication 

using dual-function-link fuzzy brain emotional controller. International Journal of Fuzzy Systems, 

24(6):2946–2968, 2022. 

Adil Jhangeer, Waqas Ali Faridi, and Mansoor Alshehri. The study of phase portraits, multistability 

visualization, lyapunov exponents and chaos identification of coupled nonlinear volatility and option 

pricing model. The European Physical Journal Plus, 139(7):1–21, 2024. 

Dipankar Kumar. Bifurcations of phase portraits and chaotic behaviors of the (2+ 1)-dimensional double-

chain dna system with beta derivative: A qualitative approach. Heliyon, 10(14), 2024. 

Chih-Min Lin, Duc-Hung Pham, and Tuan-Tu Huynh. Encryption and decryption of audio signal and 

image secure communications using chaotic system synchronization control by tsk fuzzy brain emotional 

learning controllers. IEEE Transactions on Cybernetics, 52(12):13684– 13698, 2021. 

Zuoxun Wang, Cong Song, An Yan, and Guijuan Wang. Complete synchronization and partial anti-

synchronization of complex lu¨ chaotic systems by the ude-based control method. Symmetry, 14(3):517, 

2022. 

Changjin Xu, Mati Ur Rahman, Bibi Fatima, and Yeliz Karaca. The- oretical and numerical investigation 

of complexities in fractional-order chaotic system having torus attractors. Fractals, 30(07):2250164, 2022. 

Her-Terng Yau, Yu-Chi Pu, and Simon Cimin Li. Application of a chaotic synchronization system to 

secure communication. Information technology and control, 41(3):274–282, 2012. 

 

 


