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Abstract: 

In this article, we argue that folding back is successful when the learners engage in exploratory talk. To 

support our argument, we sourced data from a Grade 10 mathematics classroom of 54 learners who 

participated in a four-week teaching experiment conducted by the second author. We mainly focused on 

talks in two groups of learners to address the silence of literature on folding back that alludes to the kind 

of talk that learners engage in. Data were captured through video recording of learners’ interactions as 

they worked on the tasks in different sessions. We present these data as transcribed extracts of talks that 

the learners held and synthesise them into stories through Polkinghorne’s narrative mode of data analysis, 

also using a process that Kim referred to as narrative smoothing. Pirie and Kieren’s conception of folding 

back and Wegerif and Mercer’s three ways of talking and thinking among learners were used as a 

heuristic device for synthesising the stories. The narratives illustrate that exploratory talk promotes 

folding back, where learners build on each other’s ideas to develop geometry understanding. Therefore, 

the significance of this article is that for classrooms that wish to promote growth in understanding through 

folding back, the type of talk that should be normative is exploratory talk. 

Keywords: folding back, dynamical theory of the growth of mathematical understanding, dialogical 

framework for researching peer talk, geometry understanding. 

 

Introduction 

The study of high school geometry remains a 

challenge in mathematics education. However, 

some studies show that folding back in Pirie and 

Kieren’s theory of growth in mathematical 

understanding is beneficial for growth in 

geometry understanding. For example, when 

Gülkilik et al. (2015) examined Grade 10 

learners’ understanding of geometric 

transformation, they recommended that learners 

should be encouraged to fold back to the inner 

levels to strengthen how concepts are 

understood. In addition, Pirie and Kieren’s 

theory enabled Yao (2020) to capture the 

evolving understanding of geometric 

transformation when working with secondary 

school preservice teachers. Also, a study by 

Akarsu (2022) showed that the theory, when 

used together with Van Hiele’s model of 

geometric thinking, offers a unique perspective 

for appreciating how learners develop an 

understanding of geometric reflection. While 

framing their study on Piere and Kieren’s theory 

jointly with Duval’s (2006) Semiotic 

Representation Theory, Gülkılık et al. (2020) 

asserted that the former theory enabled the 

construction of images about geometric concepts 

as well as noticing mathematically significant 

and traceable properties of that concept. 

However, while some researchers have used 

Pirie and Kieren’s theory and its extension by 

Martin (2008) to track and trace learners’ 
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understandings (Yao, 2021), there seems to be 

no study that examined the kind of talk that 

takes place during these processes. Yao and 

Manouchehri (2022) argue that work that 

focuses on learners’ growth of geometry 

understanding is still scarce. They further claim 

that how folding back might occur is not yet 

clear. Factors that enhance folding back towards 

developing specific mathematical actions are not 

explicit. For example, Chiphambo and Feza 

(2020) conducted a study with Grade 8 learners 

and found that teaching methods influenced how 

to succeed in geometry. The specific methods 

mentioned are the hands-on and mind-on 

learning of geometric concepts. However, 

studies on folding back and focusing on 

learners’ understanding of geometry do not 

analyse the type of talk learners engage in so 

that understanding can occur. This silence in the 

literature occurs regardless of 

acknowledgements of enhanced cognitive 

activity that come with talk interventions in 

classrooms (Soysal, 2019). Though Yao and 

Manouchehri (2022) detailed how folding back 

takes place, they also did not classify the type of 

talk that the learners use. Therefore, in a context 

where folding back offers learners a way of 

deepening learning through visiting earlier forms 

of understanding (Hähkiöniemi et al., 2023) to 

build deeper mathematical understanding and 

language (Corovic, 2022), this article argues that 

folding back is successful when the learners 

engage in exploratory talk. Potentially, 

‘exploratory talk provides the richest and most 

valuable contribution to the quality of learning’ 

(Chan, 2020, p. 10). In a South African study by 

Hardman and Lilley (2023), exploratory talk 

among learners symptomised a ‘truly dialogical 

interaction, where partners together construct 

meaningful [mathematics] knowledge through 

negotiation and debate’. (p. 13). In mathematics, 

Sfard (2008) brought to the fore the relationship 

between thinking and speech in her theory on 

commognition, a term she coined to combine 

thinking with communication. Mercer (2008) 

has also drawn a correlation between talking, 

reasoning and understanding in education. He 

classified such talk into three types: 

disputational, cumulative, and exploratory 

(2008). Disputational talk is observable when 

there are no agreements and individualised 

decision-making. In cumulative talk, learners 

construct knowledge common among 

themselves through repetition, confirmation and 

elaborations. In exploratory talk, ‘partners 

engage critically but constructively with each 

other’s ideas’ (Mercer & Littleton, 2007, p. 72). 

For example, a Flemish study conducted by 

T’Sas (2018) found that when exploratory talk is 

taught properly, the learners learn from each 

other to improve group reasoning. This was not 

the only benefit; the learners improved skills on 

argumentation and problem-solving. A South 

African study conducted in a Physical Science 

classroom showed that learners used exploratory 

talk when working on tasks requiring application 

(Radebe & Mushayikwa, 2023). In addition to 

the benefits of exploratory talk in classrooms, it 

encouraged the development of critical thinking, 

the elements of which were in expressing 

differing views and offering clear justifications 

(Liang & Fung, 2021). These benefits can be 

extended to mathematics learners as evidenced 

in a South African study by Webb et al. (2017). 

Furthermore, ‘[i]n [exploratory] talk, all partners 

actively participate, opinions are sought, and 

decisions are jointly made’ (Røsseland et al., 

2022, p. 1). However, the occurrence of 

exploratory talk in folding back as a process 

through which understanding develops has not 

been captured in literature. In this study, the 

following research question was addressed: 

What kind of talk is necessary for folding back 

to help learners develop geometry 

understanding? 
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Theoretical Framework 

To analyse learners’ growth in understanding 

geometry, we adapted Pirie and Kieren’s (1994) 

dynamical theory of the growth of mathematical 

understanding. This theory contains eight nested 

layers that explain the non-linear process of 

learning mathematics. Table 1 lists these layers 

and their descriptions. Pirie and Kieren’s (1994) 

theory has a vital characteristic called folding 

back. Through folding back, learners reconstruct 

and elaborate on an inner level of understanding 

to support the next level of understanding. 

Learners use folding back when they fail to 

apply their understanding at a specific level. 

Instead, they move back to an inner level to 

extend their understanding and reorganise it so 

that they can address their failure (Gülkılık et al., 

2015). Martin (2008) argued that the notion of 

folding back was initially underdeveloped and 

unelaborated. Subsequently, he proposed a 

framework that elaborated on folding back as 

having three tenets. The three tenets are the 

source of intervention, the form of folding back 

and the outcome of folding back. In this article, 

folding back is a lens through which we 

explored how learners build on each other’s 

ideas to develop their understanding of 

geometry. The source of intervention invokes a 

learner to fold back. The source of intervention 

may be the self, a peer, a teacher or material at a 

learner’s disposal (Martin, 2008). According to 

Martin (2008), the form of folding back 

describes actions that learners engage in because 

of the source of intervention. These actions may 

involve working at an inner layer using existing 

understanding, collecting at an inner layer, 

moving out of topic, working there, and causing 

a discontinuity. The actions that make up the 

forms of folding back may 

 

TABLE 1: The eight layers of the dynamical growth of mathematical understanding. 

 
Note: Please see the full reference list of the article for more information. 
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Result in either effective or ineffective 

folding back. Effective folding back occurs 

when learners apply a comprehensive 

understanding to solve the initial problem 

(Martin, 2008). Contrary to that, ineffective 

folding happens when learners cannot apply 

comprehensive understanding to the initial 

problem. Furthermore, we had to analyse how 

learners build on each other’s ideas as peers. We 

found Wegerif and Mercer’s (1997) dialogical 

framework for researching peer talk in which 

they define social modes of thinking through 

three kinds of talk relevant for our analysis. 

Wegerif and Mercer’s perspective on talk as a 

thinking tool enabled them to delineate thinking 

that is ‘embodied in different types of talk’ (p. 

60). They found these kinds of talk appropriate 

to explain how to use talk to build on each 

other’s ideas. These talks are disputational talk, 

cumulative talk and exploratory talk (Wegerif & 

Mercer, 1997). In disputational talk, participants 

tend to be defensive in justifying their 

contribution to the talk because others may view 

their ideas narrowly (Mercer, 2008). Mercer 

(2008) characterises cumulative talk as 

repetitions, confirmations and elaborations that 

avoid differing opinions to maintain the image 

of a group. However, the partners offer 

statements and suggestions to consider jointly in 

exploratory talk (Wegerif & Mercer, 1997). 

They may challenge and counter-challenge 

suggestions, but challenges are justified, and 

they can offer alternative hypotheses. All 

partners participate actively, and opinions are 

sought and considered before making joint 

decisions. ‘Compared with the other two types 

of talk, in exploratory talk is more publicly 

accountable and reasoning is more visible in the 

talk’ (Mercer & Wegerif, 2004, p. 87). 

Furthermore, exploratory talk fosters critical 

thinking and cognitive development (Mercer, 

1996). Although not an exhaustive list, the 

following features were identified by Mercer 

(2008) to characterise exploratory talk:  

• Everyone is encouraged to contribute.  

• Everyone listens actively.  

• People ask questions.  

• People share relevant information.  

• Ideas and opinions are treated with 

respect.  

• There is an atmosphere of trust.  

• There is a sense of shared purpose.  

• Contributions build on what has gone 

before.  

• People give reasons for their thinking.  

• Ideas may be challenged.  

• The group seeks agreement for joint 

decisions.  

 

The three types of talk are ‘not meant to be 

descriptive categories into which all observed 

speech can be neatly and separately coded’ 

(Wegerif & Mercer, 1997, p. 54). Both the Pirie 

and Kieren (1994) dynamical theory of the 

growth of mathematical understanding and 

Wegerif and Mercer’s (1997) dialogical 

framework for researching peer talk are not 

meant to chunk data into fixed categories but 

will be used to explicate the data and illustrate 

that exploratory talk is essential for folding back 

to occur. 

Methods 

We sourced data from a Grade 10 

mathematics classroom of 54 learners who 

participated in a four-week teaching experiment 

conducted by the second author. This article 

mainly focuses on talks in two groups of 

learners. Teaching experiments are a sequence 

of teaching episodes through which the 

researchers study and theorise about learners’ 

learning and reasoning in mathematics (Lamb & 

Geiger, 2012). In addition, teaching experiments 

offer researchers opportunities to learn the 

mathematical knowledge of learners and how 

they construct it through talk (Steffe & 
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Thompson, 2000). Through teaching 

experiments, researchers can systematically 

investigate the development of learners’ 

meaning (Moore et al., 2019). Hence, the 

teaching experiment allowed us to identify 

critical incidents where learners’ exploratory 

talk allowed them to fold back to grow their 

understanding as they worked through some 

geometry tasks. We did not expect these 

incidents to happen, but they have ‘the potential 

to deepen our understanding of learners’ [growth 

in mathematical understanding]’ (Choy, 2014, p. 

143). The incidents we analysed for this study 

came from two groups of learners out of 54 

Grade 10 mathematics learners. In the first 

group, the participants’ pseudonyms were John 

and Koena; in the second group, they were 

Lesiba, Lebogang and Sipho. The sample size of 

these two groups is consistent with the teaching 

experiment research design as it allows one or a 

few learners as participants in the study (Steffe 

& Thompson, 2000).   

Data were captured through video recordings 

of learners’ interactions as they worked on the 

tasks in different sessions. We present data as 

extracts of transcripts of talks that the learners 

held because talk is used to check learners’ 

growth in understanding. We synthesised the 

extracts into stories through the narrative mode 

of data analysis (Polkinghorne, 1995). This 

mode of data analysis allowed us to fill gaps in 

narratives and bring meaning that was not 

necessarily explicit in the extract. Kim (2016) 

refers to this process of filling gaps in data as 

narrative smoothing. Narrative smoothing helps 

make narratives coherent and engaging. In 

narrating the extracts, the frameworks by Pirie 

and Kieren’s (1994) conception of folding back, 

Martin’s (2008) elaboration of folding back and 

Wegerif and Mercer’s (1997) three ways of 

talking and thinking among learners were used 

as a heuristic device for synthesising the talks. 

We chose the extracts of talk where 

understanding of geometric ideas can be 

explained through folding back to illustrate 

instances of exploratory talk.   

Quality criteria   

Teaching experiments are judged on their 

ability to provide a model or argument related to 

teaching and learning because they are grounds 

for researchers to learn (Molina et al., 2007). 

Hence, this article argues that folding back is 

successful when the learners engage in 

exploratory talk. The argument is not limited to 

one extract but to two and is new to studies on 

folding back, as shown in the introduction of the 

article. However, the argument cannot be 

replicated in other settings as this is not a 

requirement for teaching experiments (Steffe & 

Thompson, 2000). Instead, it can be transferred 

to other settings for progressive refinement of 

the argument by either the authors of this article 

or other researchers interested in folding back. 

Retrospective analysis of the data for this article 

was made possible by capturing data on video to 

enable both the first author and the other authors 

to recollect what happened during data 

collection.   

Ethical considerations   

The second author applied for ethical 

clearance to conduct the study through the 

university’s ethical committee, the school’s 

principal, and the parents of participating 

learners. Ethical clearance to conduct this study 

was obtained from the University of Limpopo, 

Turfloop Research Ethics Committee (Clearance 

Certificate no. TREC/51/2016:PG). He also 

informed the learners who willingly participated 

in data construction without compensation for 

the study. As participants, the learners had a 

chance to enrich their knowledge of geometry as 

the study stayed within the prescribed 

curriculum.   

Results 

The analysis presented here illustrates 

instances of talks where the process of folding 

back happened as learners engaged in 
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exploratory talk as they worked on two 

geometry learning tasks. The first task assessed 

learners’ ability to apply the theorem that states 

that an exterior angle of a triangle is equal to the 

sum of its two opposite non-adjacent interior 

angles. The task (Figure 1) was stated as 

follows. If ∠ A = 90°, prove that DÔC = 45°. 

Using layers of understanding by Pirie and 

Kieren (1994) as a referent, the assessment task 

was pitched at the property noticing level. 

Learners had to notice that they had to apply 

properties of exterior angles of a triangle and the 

sum of angles in a right-angled triangle. The 

following extract starts after John asked the class 

teacher for help:   

1.1. John: Sir, please help us to find DÔC.   

1.2. Teacher: What will be the sum of ∠ B?   

1.3. John: 2 x … hmmmm ∠ B1 is equal to 

∠ B2 and ∠ B2 is equal to x, which means each 

of ∠ B1 and ∠ B2 is x, do you understand?   

1.4. Koena: Eish … [shaking head-indicating 

that he does not understand].   

1.5. John: It means that here [pointing at ∠ B 

and ∠ C] it is 2x and 2y …   

1.6. Koena: Oh, I understand now, meaning 

∠ B is having two angles …   

 

 
Source: Mabotja, K.S. (2017). An exploration of folding back in improving Grade 10 students’ reasoning in geometry. Unpublished master’s 

thesis, University of Limpopo, Mankweng, South Africa (p. 63). Retrieved from http://hdl.handle.net/10386/1805 

 

FIGURE 1: An exterior angle of a triangle equals the sum of its two opposite non-adjacent interior 

angles. 

 

The teacher intervened by asking a question 

that looked for the sum of the angles that formed 

∠ B. John’s answer suggested that he understood 

the representation of these angles and then 

showed that they are equal. Hence, he gave the 

sum of the angles to be 2x. In this instance, the 

teacher’s intervention was explicit and 

intentional as it led John to the desired response. 

In a similar manner, John realised that ∠ C = 2y. 

In so doing John was able to fold back from the 

property noticing level to the image having 

level. John then checked with Koena if he shared 

his understanding; this comparison is one of the 

indicators of exploratory talk. However, Koena’s 

reaction on line 1.4 suggested that he did not 

understand. John drew Koena’s attention to 

notice that ∠ B and ∠ C were sums of 2x and 2y. 

This part of exploratory talk led Koena to move 

from primitive knowing to image having. As 

observed by Mercer et al. (1999, p. 97), ‘in 

exploratory talk, knowledge is made publicly 

accountable and reasoning is visible in the talk’.   

When John shared his ideas with Koena, the 

ideas contributed to Koena’s development of 

geometry ideas. Koena was observed building 

on John’s ideas and reformulating them as: ‘∠ B 

is having two angles ...’ (line 1.6). Folding back 

by both John and Koena (moving from image 

having level to property noticing) resulted in an 

environment where the two learners could 

develop an idea together. In this instance, we 

observed John’s exploratory talk characterised 

by mathematical actions such as explaining and 

justifying ideas to his peer. Thus, learners’ 
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ability to explain their own ideas become 

enhanced when they engage in exploratory talk.   

The talk between John and Koena continued 

in the extract that follows. It began with John 

questioning how they can evaluate ∠ x and ∠ y. 

This makes the teacher the source of the 

intervention. Again his intervention was 

intentional and explicit because it ultimately led 

the learners to the size of ∠ x and ∠ y:   

1.7. John: Yes … question is, how are we 

going to calculate 𝑥 and 𝑦?   

1.8. Teacher: What will be the sum of angles 

in that triangle?   

1.9. John: 90° + 2x + 2y = 180° [talking and 

writing]   

1.10. John: 90° + 2x + 2y = 180° … 2x + 2y 

= 90°   

1.11. Koena: So, do we find x first?   

1.12. John: What if we divide by 2?   

1.13. Koena: We divide 2x + 2y by 2 … then 

we remain with x + y = 45°   

 

In this extract, it can be claimed that when 

John asked the question on how to calculate the 

sizes of x and y, he trusted that the group 

members would share relevant information. In 

sharing the responsibility of working out the 

problem, the teacher asked them about the sum 

of angles of a triangle. The teacher’s questioning 

guided learners to knowledge that they had met 

before. Hence, the response by John, who talked 

as he wrote: 90° + 2x + 2y = 180°. In so doing, 

the teacher invoked John to collect knowledge at 

an inner level. In this case, John’s mathematical 

actions suggested that he noticed the properties 

of the sum of angles in a triangle. These actions 

were evidence that he was at a property noticing 

level. The talk proceeded with Koena and 

suggested that they solve for x first. Instead, 

John suggested that they divide by 2. Koena 

proceeded to divide the terms of the equation by 

2 to get x + y = 45°. This move indicated that 

there was no competition of ideas in the group. 

Instead, there was a sense of shared purpose.   

The next extract shows the interactions 

between learners when they finalised their work 

on the task. The extract began with an 

intervention from John. He suggested that the 

other learners should rotate the drawing and 

redraw it (Figure 2):   

1.14. John: Let us say we put it this way 

[rotate the learning activity drawing] … draw it 

[suggest that other peers draw].   

1.15. Sipho: How?   

1.16. John: Looking at it the way it is ...   

1.17. Sipho: I am going to make mistake.   

1.18. John: [Starts drawing] [see Figure 2]   

1.19. Koena: Ohoo ∠0 is an exterior angle.   

1.20. John: Yes, my friend … so ∠0 is equal 

to B2 + C2 (exterior) … ohooo … wooowwww! 

∠0 is equal to ∠B, ∠B is the same as, look at it x 

+ y; ∠0 = x + y … ∠0 = 45°.   

 

The talk started with John encouraging the 

group members to redraw the diagram after he 

rotated it. It seems that John wanted to rotate the 

diagram so that it became easier to identify 

properties of the diagram that would help them 

solve the problem at hand. The dynamical theory 

of the growth of mathematical understanding 

refers to this as the property noticing layer. He 

drew the learners’ attention to the triangle BOC 

where the angle BÔC is located. The learners 

had to move out of the idea that was required on 

the task to transformation of the diagram. 

Immediately, John drew the diagram that 

isolated the required and sufficient information 

to finalise the proof. Koena was able to notice 

that DÔC is an exterior angle to Δ BOC. John 

extended this observation to conclude that DÔC 

equals x + y = 45°. In the extract John referred 

to angles x and y as B2 and C2.   
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FIGURE 2: Rotation of a part of Figure 1 to clarify its properties. 

 

John’s utterances showed that he was 

impressed by the observation by Koena. He said 

‘exterior … ohooo … wooowwww!’. This 

utterance can be classified as a characteristic of 

exploratory talk where learners treat each other’s 

ideas and opinions with respect and 

appreciation. Again it can be argued that through 

folding back, an environment in which learning 

results from co-construction of ideas and 

extension of these ideas is able to flourish.   

After the class was taught about the midpoint 

theorem, the learners were assessed using the 

task below. Using the framework for growth of 

mathematical understanding (Pirie & Kieren, 

1994) as referent, the learning activity was 

considered to be at the formalising layer. In this 

learning activity, learners were required to 

consciously notice properties related to the 

midpoint theorem and use them to calculate the 

interior angles of Δ MNT. Thus, the learning 

task required learners to reason with properties 

of the objects (Gibbons, 2012; Wright, 2014).   

In Figure 3, the points M, N and T are the 

midpoints of sides AB, BC, and AC respectively 

in Δ ABC. Calculate the interior angles of 

Δ MNT.   

The learners seemed to notice that they could 

use the idea that the sum of angles in a triangle 

are equal to 180°. They were observed 

calculating the magnitude of ∠ C. They also 

determined the magnitude of the other angles in 

the diagram before evaluating the interior angles 

of Δ MNT. Once they finished, they studied the 

diagram in silence until Sipho asked, ‘So how do 

we find angles M, N and T?’ The extract that 

follows represents the interactions that emerged:   

2.1. Sipho: How do we determine angles M, 

N and T?   

2.2. Lesiba: Is it not possible to use midpoint 

theorem?   

2.3. Sipho: Isn’t this F? This is F … you see 

…   

2.4. Lebogang: Then it is corresponding 

angles ...   

2.5. Lesiba: Of parallel lines.   

2.6. Lebogang: It means that here [pointing 

to ∠N], we are going to represent it as ∠ N1, 

∠ N2 [TN C], here [pointing to ∠T] ∠ T1 and 

∠ T2.   

2.7. Lesiba: But here they didn’t give us 

∠ N1 and ∠ N2. [Inaudible] ∠ of ∆MTN and 

then midpoint of AC is T … midpoint MN and 

TR are midpoints of...   

 

 
FIGURE 3: Application of the midpoint theorem. 
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2.8. Lebogang: If we can say ∠N1 and ∠ N2 

we will understand that ∠B is equal to ∠N2, then 

they are corresponding.   

2.9. Sipho: Ohoo ... understand, these are the 

angles that Lebogang is talking about, this is F…   

2.10. Lesiba: I can see that …   

2.11. Lebogang: This means ∠ N2 is equal to 

80°.   

2.12. Sipho: Wait a minute! Oh yes I can see 

that.   

2.13. Lebogang: Then here it’s ∆ TNC.   

2.14. Sipho: Hmmm.   

2.15. Lesiba: Hmmm.   

2.16. Sipho: You are using a long way … 

Ohooo yes continue …   

2.17. Lebogang: Then in ∆ TNC, we are 

going to do just like the first part, we take ∠ N2 

and add it with ∠ N then subtract from 180° to 

get ∠ T2 [NT C].   

2.18. Sipho: Hmmm I see it.   

2.19. Lesiba: We are supposed to find ∠ M, 

∠ N and ∠ T.   

2.20. Lebogang: Wait, listen, ∠ N2 is 

alternating to ∠ T1.   

2.21. Sipho: Show [Pause] Yes, carry on 

Lebogang.   

2.22. Lebogang: [starts writing]   

2.23. Sipho: So ∠ T1 is 80°.   

2.24. Lesiba: Alternating angles are equal …   

2.25. Lebogang: Alternating angles are equal. 

It means that ∠ T1 is 80°.   

 

The extract began with Sipho asking the 

group members how to get the size of the angles 

in triangle MTN. Lesiba suggested that they use 

the midpoint theorem, an indication that he was 

operating at the image making level. Pointing at 

TN C and MB N, Sipho examined the diagram 

and said that it satisfies the properties for F, a 

mnemonic that is used for corresponding angles 

that are formed from parallel lines. Even though 

the learners did not give a mathematically 

justifiable reason, this suggests that he was 

aware that line BM is parallel to line NT. The 

group followed on this train of thought by 

providing more relevant information and 

identified that TN C and MB N are corresponding 

angles formed by parallel lines. This exploratory 

talk assisted Lebogang to engage in acts of 

property noticing; she noticed that each of 

angles ∠ N and ∠ T consisted of three angles. 

She named them ∠ N1, ∠ N2, ∠ N3, and ∠ T1, ∠ 

T2, ∠ T (see Figure 4). 

 

 
FIGURE 4: Rotation of a part of Figure 1 to clarify its properties 

 

This further confirms Rojas-Drummond et 

al.’s (2013) and Mercer and Wegerif’s (2004) 

assertions that reasoning is visible in exploratory 

talk.   
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It seemed Lesiba did not understand 

Lebogang’s workings because he did not notice 

how that related with the midpoint theorem. But 

once he realised that she did this to show that 

TN C = ∠ B = 80° where TN C = ∠ N2 he 

accepted what Lebogang did. In this instance, 

there is evidence of exploratory talk which 

resulted in explicit peer intentional intervention, 

as observed where both Lebogang and Lesiba 

developed an understanding of the ideas used 

towards solving the given activity. Thus, 

through exploratory talk, Lesiba appeared to be 

actively involved in the resolution of the 

learning activity as he could share his ideas 

concerning the learning activity. Furthermore, 

Lesiba’s utterances in lines 2.7 and 2.10 

highlight instances where ‘opinions are sought 

and considered before decisions are jointly 

made’ (Mercer & Wegerif, 2004, p. 72) during 

exploratory talk.   

It is also evident in the vignette that through 

exploratory talk learners had different ways of 

working on a mathematics task. In this extract, 

although Sipho perceived that Lebogang used a 

lengthy method to solve the problem, 

immediately after Sipho’s utterance, it seems he 

realised the knowledge that Lebogang used 

towards solving the problem; he said: ‘Ohooo 

yes, continue’. This affirms Barnes’s (2010) 

concession that exploratory talk offers 

alternative ways of thinking about a task, which 

account for valued contributions in the learning 

environment (Chan, 2020). The utterance 

indicates that although Sipho almost challenged 

what Lebogang did, he was attentive. In this 

instance, we claim that Sipho developed an 

understanding of the approach used by 

Lebogang. Hence, Sipho’s utterance in line 2.16 

shows that what happened was now shared.   

Lebogang proceeded to show that NT C is 

computed by subtracting the sum of ∠ C and 

TN C from 180°. Exploratory talk eased the 

learners to accept challenging ideas presented by 

their peers. This ease aligns itself with a 

characteristic of exploratory talk, where 

learners’ ideas become challenged in a learning 

environment (Dahl et al., 2018; Mercer & 

Wegerif, 2004).   

Although learners were able to compute the 

magnitude of other angles such as NT C with 

appropriate geometry reasoning, Lesiba made 

them aware that the computation did not solve 

the given problem because they were supposed 

to calculate the interior angles of Δ MNT. In this 

case folding back caused a discontinuity. It can 

be claimed that in this group the learners felt at 

ease with challenging ideas that are presented by 

others.   

Lesiba’s exploratory talk resulted in learners 

folding back from property noticing to the 

formalising layer where they applied properties 

of various angles to determine the interior of 

angles of Δ MNT, as follows:   

2.26. Lebogang: Wait, listen, ∠ N2 is 

alternating to ∠ T1.   

2.27. Sipho: Show [Pause] Yes, carry on 

Lebogang.   

2.28. Lebogang: [starts writing] ∠ T1 = ∠ N2   

2.29. Sipho: So ∠ T1 is 80°.   

2.30. Lesiba: Alternating angles are equal ...   

2.31. Lebogang: Alternating angles are equal. 

It means that ∠ T1 is 80°.   

2.32. Lesiba: Ohoo so ∠ T1 is the angle inside 

Δ MNT. Here [pointing at ∠ M1] is equal to ∠ 

T3.   

2.33. Lebogang: Yes Lesiba, here we can see 

that ∠T3 is 40° because it is corresponding with 

∠C.   

2.34. Sipho: So then ∠ M1 is equal to 40°, 

these [∠ T3 and ∠ M1] are alternating angles.   

2.35. Lesiba: Yes.   

2.36. Lebogang: Then we can use the sum of 

angles in Δ MNT to find ∠ N1.   

2.37. Sipho: Yes, let’s write it.   

2.38. Lesiba: Okay I see it, ∠ T1 plus ∠ M1 

plus ∠ N1 is 180°.   

2.39. Sipho: Sum of angles in a triangle.   

2.40. Lebogang: [starts writing] ∠ T1 + ∠ M1 

+ ∠ N1 = 180° (Sum of ∠s in triangle).   

2.41. Lesiba: Let us substitute the values of 

the other two angles.   
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2.42. Lebogang: [continues writing] ∠ N1 = 

180° – 40° – 80°.   

2.43. Sipho: Yes, so ∠ N1 = 60°.   

The above extracts illustrated that Lebogang 

successfully demonstrated how ∠ T of Δ MNT is 

calculated, evidence that she consciously noticed 

properties of alternating angles and worked with 

them. In addition, Sipho added by giving the size 

of ∠ T and Lesiba justified why what they did is 

geometrically accurate – an indication that 

everyone can contribute during exploratory talk 

of problem-solving. Eventually the learners were 

able to fold back to the formalising level where 

they determined the magnitude of the angles of 

Δ MNT. 

Conclusion and Recommendations 

This article argues that folding back is 

successful when the learners engage in 

exploratory talk. We supported this argument by 

providing extracts of talk among groups of 

learners. These talks showed that learners could 

fold back as they worked on the given problems 

because they (1) allowed individuals to take the 

lead in the talk, (2) followed up on ideas 

presented in the group, and (3) either supported 

or challenged ideas in an uncompetitive way.   

In the article, we pursued the question: What 

kind of talk is necessary for folding back to help 

learners develop geometry understanding? We 

used the narrative mode of data analysis to 

analyse the type of talk learners engage in while 

folding back (Martin, 2008). Two groups of 

learners were video recorded while working on 

geometry learning activities and our focus was 

on the learners’ instances that promoted the 

building of ideas through folding back. The 

article shows that exploratory talk promotes 

folding back where learners build on each 

other’s ideas to develop geometry 

understanding. As learners moved across 

different layers of understanding, they shared 

their thought processes which helped their peers 

to enhance their geometry understanding 

(Extract 1 and Extract 2). Banes et al. (2020) 

claimed that exploratory talk in mathematics 

classrooms is rare. Therefore, this claim 

necessitates studies that explore engendering 

exploratory talk in teaching and learning of 

geometry in schools. Furthermore, we encourage 

research to examine the understanding of 

geometry concepts using Pirie and Kieren’s 

(1994) conception of folding back and Wegerif 

and Mercer’s (2004) three ways of talking and 

thinking.   

This finding concurs with Towers and 

Martin’s (2014) study, which attests that 

individual learners’ actions and statements 

contribute towards building understanding for a 

group of learners. In addition, the finding may 

be comparable to Hunter and Civil’s (2021, p. 

16) observation of learners who participate in 

collaborative groups, not as singles but ‘as an 

interrelated and interdependent organism’. The 

finding was evident when learners explained and 

elaborated their actions, such as using 

mnemonics to solve the geometry learning 

activities. For Wei and Ismail (2010) and Martin 

and Towers (2015), this leads to a pathway for 

learners to modify and build their mathematical 

understanding. Through folding back, learners 

become interested not only in their geometry 

understanding but also in their peers’ 

understanding. This results in an opportunity for 

peers to explain their preferred approach in 

solving geometry learning activities.   

Furthermore, folding back promotes an 

environment where ideas are not only shared but 

appreciated. Through folding back, individual 

learners respect and encourage their peers to 

apply and articulate preferred methods to arrive 

at the solution of a geometry learning activity. 

Learners’ ability to articulate their actions in 

resolving geometry learning activities not only 

promotes their confidence but plays a significant 

role in their development of geometry 

understanding (Mabotja, 2017; Yao & 

Manouchehri, 2022). As a result, learners 

become collaborative instead of competitive in 

their geometry learning environment. Our 
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overall reflection on the cited narratives prompts 

us to conclude that for teachers who wish to 

promote growth in understanding through 

folding back, the type of talk that should be 

normative is exploratory talk. Teachers should 

request learners to explain, evaluate, and argue, 

while trading off merely finding answers for 

classroom talk that emphasises reasoning 

(Røsseland et al., 2022). 
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