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Abstract:

In this article, we explored Grade 11 learners’ algebraic and geometric connections when solving
Euclidean geometry riders. A qualitative interpretive case study design was followed. Thirty Grade 11
learners from a non-fee-paying secondary school in the Capricorn North district of South Africa were
conveniently sampled to participate in this study. Data were collected through learners’ responses to
classwork, homework exercises, and task-based interviews. Data were analysed thematically. The
findings revealed that to solve Euclidean geometry riders successfully, learners need to establish the
feature connections embedded in the given figure or diagram. The ability to make feature connections
provides a point of departure in the solution process of a geometric problem.
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Introduction

This study explored Grade 11 learners’
algebraic and geometric connections when
solving Euclidean geometry riders. A Euclidean
geometry rider is a geometric problem based on
a set of theorems, definitions and axioms
(Giannakopoulos, 2017). Solving Euclidean
geometry riders requires learners to connect their
algebraic and geometric concepts (Kemp &
Vidakovic, 2021). South African learners
grapple with solving Euclidean geometry
problems because of the inability to integrate
geometric and algebraic knowledge (Machisi,
2021). In Euclidean geometry, concepts are
represented by axioms, definitions, theorems,
and proofs (Denbel, 2015, Madzore, 2017).
Solving Euclidean geometry problems helps
learners to develop logical and deductive
reasoning skills, which help them to expand their
mental and emotional capacities (Liu et al.,
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2015). According to Pavlovi¢ova and Bockova
(2021), learning geometry improves learners’
geometric thinking. Therefore, learners need to
be taught Euclidean geometry to develop their
conceptual knowledge and analytical skills
(Mamali, 2015). Furthermore, solving Euclidean
geometry problems requires learners to apply
their  visualisation skills. Knowledge of
arithmetic and algebraic concepts is essential in
solving Euclidean geometry problems (Suwito et
al., 2016). When solving Euclidean geometry
problems, learners interact with shapes in
different orientations (Siyepu & Mtonjeni,
2014).

South African learners in Grade 11 are
expected to solve Euclidean geometry riders and
prove theorems as part of their coursework
(Department of Basic Education [DBE], 2011).
Euclidean geometry riders are integrated into
other  mathematics  concepts, such as
trigonometry, coordinate geometry, and algebra
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(Denbel, 2015). Furthermore, riders contain
different mathematical concepts, for example the
congruency of triangles, and properties of
parallel lines (Fauzi, 2015). As such, learners
need to combine different mathematical content
knowledge and procedures when solving
Euclidean geometry riders, which also helps
them to develop conceptual knowledge (In’am,
2016). According to Govender (2014), learners
should connect theorems within Euclidean
geometry, and apply concepts from other
branches of mathematics such as algebra,
trigonometry and analytical geometry. When
solving and proving Euclidean geometry riders,
learners are required to apply knowledge of
theorems and properties of shapes to formulate
algebraic equations to solve the problems and
interpret them geometrically (Pilgrim &
Bloemker, 2016). Therefore, this indicates that
learners’ competence in proving and solving
geometry riders depends on their abilities to
connect and integrate algebraic and geometric
concepts and processes during the solution
process (Sialaros & Christianidis, 2016). The
ability to connect algebraic knowledge and
knowledge of Euclidean geometry is an essential
prerequisite skill for solving geometric riders as
well as developing conceptual integration during
problem-solving (Pilgrim & Bloemker, 2016). It
is therefore necessary to look at the algebraic
and geometric connections that Grade 11
learners make when solving Euclidean geometry
riders.

The ability to make connections is an
essential skill for solving Euclidean geometry
riders successfully (Reddy, 2015). Learners who
possess this ability can integrate or identify
properties of figures within representations.
Mathematical connection refers to the skill of
making interrelationships among mathematical
concepts, skills, and as well as relating ideas to
real-world situations and other related topics
(Haji et al., 2017). Learners who possess this
skill view mathematics as a complete entity, not
a separate subject of distinct concepts

(Egodawatte & Stoilescu, 2015). There are two
categories of mathematical connections, namely
internal and external connections (Baiduri et al.,
2020). Internal connections are interrelationships
between mathematical topics, mathematical
processes and procedures (Baiduri et al., 2020).
External connections are interrelationships
between mathematics and other subjects in the
curriculum as well as everyday life (Ayunani &
Indriati, 2020). Thus, mathematical connections
provide learners with a broader and more
holistic understanding and view of mathematics
(Ndiung & Nendi, 2018). Learners learn about
the properties of shapes and theorems of
Euclidean geometry and then summarise these
concepts algebraically using equations (Pilgrim
& Bloemker, 2016). When learners possess
mathematical connection skills, they will be able
to successfully solve Euclidean geometry riders.

Several researchers revealed that learners
experienced some challenges when solving
Euclidean geometry riders. Makonye and
Fakude (2016) reported that learners incorrectly
apply Euclidean geometry theorems during
problem-solving. The South African National
Senior Certificate Diagnostic Report showed
that learners had trouble relating prior
knowledge to concepts of Euclidean geometry,
visualising diagrams and solving problems
(DBE, 2020). Furthermore, Ngirishi and Bansilal
(2019) reported that South African learners fail
to make correct constructions when proving
theorems; they incorrectly apply Euclidean
geometry theorems and figure properties (DBE,
2020). Learners have misconceptions about
geometric concepts because they rely on the
physical appearance of the figures, an inability
to associate geometric properties with each
other, overgeneralisation, and memorisation
(Zuya & Kwalat, 2015). In addition, learners
struggle to incorporate or connect other
mathematical concepts and struggle with writing
algorithms correctly when solving riders (DBE,
2020; Luneta, 2015). This indicates that learners
experience challenges in connecting geometric
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and algebraic knowledge when proving and
solving riders. Thus, in this article, we explored
Grade 11 learners’ algebraic and geometric
connection skills for solving and proving
Euclidean geometry riders.

Literature Review

The integration of algebraic and geometric
concepts in solving Euclidean geometric
problems has been a topic of significant interest
in mathematical education. This approach
leverages the strengths of both algebra and
geometry, fostering deeper understanding and
more  versatile  problem-solving  skills.
Integrating algebraic and geometric concepts
helps students develop a more comprehensive
set of tools for solving problems. Algebra
provides a systematic approach to solving
equations, while geometry offers visual intuition
and spatial reasoning. The integration of the two
problem-solving skills provides learners with a
versatile approach to tackling geometry
problems. Studies have shown that learners who
are proficient in both areas perform better in
complex problem-solving tasks (Fuson et al.,
1997).

Euclidean geometry is a significant topic for
developing mathematical skills. However,
learner performance in geometry remains a
concern in many countries (Mosia et al., 2023).
In South Africa, the teaching and learning of
Euclidean geometry has been identified as one
of the topics that is a challenge for both teachers
and learners (Giannakopoulos, 2017). This
observation suggests the need for an urgent
intervention to seek an alternative approach to
the teaching and learning of Euclidean geometry
(Jojo, 2015). Proficiency in using mathematical
connections is an important mathematical skill,
and learners should embrace it as a tool for
solving mathematical problems. Learners with
good mathematical connection skills have high
success rates in solving mathematical problems.
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On the other hand, learners with poor
mathematical connection skills struggle with
solving mathematical problems. Learners’ low
mathematical connections efficacy impacts on
learners’ failure in solving mathematical
problems. The learners’ ability to solve
mathematical problems is measured by the
number of mathematical connections they are
able to make as they are solving the problem.
When learners connect mathematical ideas, their
understanding is deeper and more lasting, and
they come to view mathematics as a coherent
whole. By solving mathematical problems,
learners gain ways of thinking, habits of
persistence and curiosity, and confidence in
unfamiliar situations that serve them well
outside the mathematics classroom. When
learners can connect mathematical ideas, their
understanding of mathematics becomes deeper
and more durable (Ayunani & Indriati, 2020).
Mathematical tasks that involve the relationship
between mathematical ideas within a topic and
between topics train learners to improve their
mathematical connection abilities.

In the South African curriculum for the
Further Education and Training (FET) Phase,
solving Euclidean geometric problems involves
leveraging various mathematical connections
and concepts. When solving Euclidean geometry
riders, which are essentially challenging
geometry problems, integrating algebraic and
geometric connections can significantly enhance
problem-solving efficiency and depth. By
integrating algebraic and geometric approaches,
learners can more effectively solve Euclidean
geometry riders, deepening their understanding
and improving their problem-solving skills. In
Euclidean geometry, riders are challenging
problems that require a deep understanding of
various theorems and their applications. Solving
these problems often involves connecting
multiple geometric theorems, allowing for a
comprehensive approach to complex problem-
solving (Giannakopoulos, 2017). By connecting
these various mathematical concepts and
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methods, one can approach Euclidean geometric
problems from multiple angles, making the
solution process more robust and
comprehensive.

Theoretical framework

The mathematical connection framework of
Garcia-Garcia and Dolores-Flores (2018) guided
this study. The mathematical connections
framework consists of the following tenets:
procedural, part-whole, different representations,

reversibility, meaning, and feature. Figure 1
shows the theoretical framework that guided this
study.

The mathematical connection framework in
Figure 1 shows the mathematics connections that
can be used during problem-solving. These
connections  include procedural, different
representations, features, reversibility, meaning,
and part-whole (Garcia-Garcia & Dolores-
Flores, 2018). This study focused on exploring
Grade 11 learners’ algebraic and geometric
connections when solving Euclidean geometry
riders.

Intra-mathematical connections

Application problems

They appear when we present

k4

Mathematical tasks

» Procedural +
The process » Different representations |« The process
to find its to find its
solution allows y Feature o solution allows
mathematical mathematical
connections . Reversibility « connections
of type of type
> Meaning <
2 Part-whole ]

Source: Adopted from Garcla-Garcia, J., & Dolores-Flores, C. (2018). Exploring mathematical connections of pre-university learners through
tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369-389. https://doi.
0rg/10.1080/0020739X.2018.1507050

FIGURE 1: Framework to study mathematical connections.

Procedural connections

Procedural connections are made when
learners use formulas, algorithms, and rules to
solve a mathematics problem (Garcia-Garcia &
Dolores-Flores, 2018). Procedural connections
also include learners’ explanations and
justifications for using a particular formula or
procedure to solve a mathematical problem
(Garcia-Garcia &  Dolores-Flores, 2018).

Recently, Garcia-Garcia and Dolores-Flores
(2021) defined a procedural connection as a
mathematical connection in a situation, in which
if learners have or identify concept A, then B
automatically becomes a procedure to get the
solution. For example, if a learner identifies that
a triangle is right-angled, then the procedure for
solving it can involve the application of the
Theorem of Pythagoras and trigonometric ratios.
In proving and solving riders, learners identify
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the applicable theorems and corollaries from the
given geometric diagrams.

Different representations connections

Different representation refers to presenting a
mathematical idea in an equivalent or alternative
way (Garcia-Garcia & Dolores-Flores, 2018).
An alternative representation is when learners
can present a mathematical concept in more than
one form of representation (Rodriguez-Nieto et
al., 2020). Different forms of representation take
the form: algebraic-graphic, verbal-graphic,
algebraic-verbal, etc. Alternative different
representations connections are observed when
learners present theorems as algorithms and
when learners present theorems

diagrammatically. For example, the theorem
stated as ‘Angle subtended by an arc at the
centre is twice the angle subtended by the same
arc on the circumference in the other segment’
can be  represented algebraically or
diagrammatically. Figure 2 presents this
theorem.

Equivalent different representations
connections, on the other hand, appear within
the same register (for example algebraic-
algebraic); the focus is more on simplifying the
same representation. For example, the algebraic
function f(x) = x2 + 5x + 6 is equivalent to f(x) =
(x + 3) (x + 2). Equivalent different
representations connections are made when
learners

B

FIGURE 2: The angle at the centre is twice the angle at the circumference.

can present theorems in different forms
within one register. For example, the theorem
presented in Figure 2 can be written as,

o . ~ 1
0,=2P ORP =30
and the three pictures in Figure 2 represent

the same theorem but in different shapes and
orientations.

Feature connections

Feature connections are recognised when
learners can identify mathematical concepts in
different contexts using their properties (Garcla-
Garcla & Dolores-Flores, 2018). Likewise,
feature connections are mostly identified when
learners describe or develop descriptions of
properties of concepts in terms of the other as a
way of differentiating the concepts (Eli et al.,
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2013). Furthermore, the characteristics of
mathematical concepts are used to differentiate
them from others (Eli et al., 2013). In the context
of Euclidean geometry, the characteristics of
mathematical concepts refer to the properties of
shapes and their relations (Luneta, 2015). For
example, Figure 3 and Figure 4 present different
theorems but they have common aspects in
terms of shape.

Reversibility connections

According to Garcla-Garcla and Dolores-
Flores (2018), reversibility connections are
observed when learners are able to identify the
bidirectional relationship between mathematical
ideas and concepts. Reversibility connections are
evident when learners are able to use concept X
to arrive at concept Y and vice versa (Garcla-
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Garcla & Dolores-Flores, 2018). Reversibility
connections are observed when learners are able
to recognise and establish relationships among
theorems, corollaries, and CONVErses.

Reversibility connections are mostly displayed
when learners are supposed to prove Euclidean
geometry riders, for example ‘the angle

5

R

FIGURE 4: Cyclic quadrilateral PQRS.

Between a tangent and a chord is equal to the
angle subtended by the same chord in the other
segment’. Thus, when learners are not given a
circle but are required to prove that a certain
segment is a tangent, they are supposed to
identify the two angles they can prove are equal
and those angles should be equal.

Meaning connections

Meaning connections are identified when
learners can describe mathematical concepts in
their own way using relevant reasons and
arguments when solving mathematical tasks
(Garcla-Garcla &  Dolores-Flores,  2018).
Learners give mathematical concepts meaning to
differentiate them, to get a sense of what they
mean to themselves in different contexts and

give them a definition (Garcla-Garcla &
Dolores-Flores, 2021). The difference between
feature connections and meaning connections is
that mathematical concepts in feature
connections are not given definitions while in
meaning connections they are given definitions
(Garcla-Garcla &  Dolores-Flores,  2018).
Proving and solving the riders of Euclidean
geometry establish contexts of meaning when
learners can identify geometric shapes in
different orientations. In addition, meaningful
contexts arise when learners can prove the
diameter and tangents of the circles that are not
drawn. For example, in geometry an exterior
angle is one of the angles located outside a
geometric figure, but for it to be called an
exterior angle it must be on the same straight
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line as its interior adjacent angle. That is, with
the latter, the angle outside a figure will not be
called an exterior angle, if it does not fall on the
same straight line as the interior adjacent angle.

Part-whole connections

Part-whole connections appear when learners
identify the logical relationship between
mathematical concepts when solving
mathematical tasks (Garcla-Garcla & Dolores-
Flores, 2021). There are two forms of part-whole
connections, namely: inclusion and
generalisation. Inclusion part-whole connections
occur when learners can realise a mathematical
concept within another concept (Garcla-Garcla
& Dolores-Flores, 2021). Generalisation part-
whole connections occur when learners are able
identify general forms of a concept from a
specific concept. In Euclidean geometry,
generalisation  part-whole  connections are
presented through theorems and their corollaries.
Theorems are general statements that learners
must conceptualise to the respective geometry
diagrams they are presented within a particular
guestion.

Research methods and design

In this article, a qualitative interpretive case
study design by Merriam (1998) was utilised.
Grade 11 mathematics learners were considered
as a case. All 30 Grade 11 learners were
conveniently sampled to participate in this study
(Cohen et al., 2011). These participants were
also purposefully selected as Euclidean
geometry is prescribed for them in South Africa.
The participants were from a public secondary
school in Capricorn North district, South Africa.
Participants consisted of 19 girls and 11 boys,
and their ages ranged from 16 to 18 years. Data
for this study consist of learners’ responses to
classwork and homework activities.
Additionally, data were triangulated using task-
based interviews through which learners were
asked questions about the connections they were
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making when solving the given classwork and
homework activities. All the task-based
interviews were video-recorded and later
transcribed. Reflexive thematic analysis was
used to analyse the collected data (Braun &
Clarke, 2006). The data were coded and grouped
into themes according to their commonalities
drawn from the mathematical connection
framework  constructs  which ~ comprise
procedural, different representation, feature,
reversibility, meaning  and part-whole
connections (Garcla-Garcla & Dolores-Flores,
2018). These were further classified as either
algebraic or geometric connections when
finalising the themes that are reported in this
study. Data triangulation of classwork and task-
based interviews, peer debriefing of all the
authors and audit trail of the whole research
process were followed to ensure trustworthiness
during the analysis process (Nowell et al., 2017).
Learners’ parents consented to their children’s
participation in the study. In addition, the
participants assented to participate in this study.
Pseudonyms were used in place of learners’
names. The Limpopo Provincial Department of
Education and the selected school gave their
permission to conduct the study.

Results

Learners’ responses to task-based interviews,
classwork and homework activities were
analysed thematically in this study. In this study,
we selected some of the learners’ responses
based on the connections they made as they
solved the problems. The algebraic and
geometric connections that learners made in this
study are presented below.

Geometric feature connections leading to
algebraic procedural connections

Some learners managed to identify the
properties of geometric figures embedded in the
rider. These learners made geometric feature
connections which led to procedural connections
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which are algebraic. For example, Learner 26’s
response to question 3 of class activity 2 is
shown in Figure 5.

From Figure 5, the learner started by making
feature connections that helped him to determine
the length of AB and BC. The learner further
applied algebraic connections to determine the
correct length of AB. The statements AB = 4x
and BC = 4x show that the learner was able to
make feature connections by applying the
theorem which states that ‘A line drawn from the
centre of the circle perpendicular to the chord
bisects the chord’. Thus, the learner was able to
connect the correct theorem with the diagram
through the features of the given diagram.
Therefore, the learner was able to make the
geometric feature connection by applying the
correct theorem to the given diagram. In
addition, the learner made a geometric feature
connection by applying the Theorem of
Pythagoras to determine the radius OC of the
circle.

The learner managed to substitute correctly,
thus making the correct algebraic procedural
connection. However, the learner could not get

to the solution because of simplification after
substitution into the Theorem of Pythagoras.
This learner wrote OC = 2x, which means that
the learner was taking the square root of each
term of the equation. The learner failed to
simplify the surds, hence committing an
algebraic procedural error. When interviewed
about why he wrote that way, the learner
responded by saying: ‘OC is the square root of
OC2 and 2x2 + (4x)2 = 2x’. This learner failed
to make connections between the square and the
square root concepts which affected the learner’s
solution process. Therefore, the learner was
unable to finish the procedure due to a lack of
knowledge of simplifying the surds.

Geometric feature connections leading to
algebraic procedural connections

From Figure 6, item 1.1, Learner 7 was able
to make geometric feature connections. The
learner identified that A, = B, and managed to
justify that statement with the correct reason.
The learner was able to realise that OA and OB
are radii of the given circle and are equal, hence
making triangle ABO an

In the diagram, O is the centre of the circle, Ch
radius OD at B. OB = 2x units and AC = &x units

Show that the length of BD is 2x{V5-1) unit

3

FIGURE 5: Learner 26 response to question 3 of class activity 2: (a) Question and (b) Learner’s
response.

la]

0]

FIGURE 6: Learner 7 response to home activity 1: (a) Question and (b) Learner’s response.
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FIGURE 7: Learner 9 response to question 2 of home activity 2: (a) Question and (b) Learner’s
response.

Isosceles triangle. Although the learner did
not write all the algebraic steps of determining
the size of A, the feature connections
established helped the learner find that the size
of A,= 75°. This also emanated from the learner
being able to connect 0; to ACB. During the
task-based interviews, when asked how she
arrived at the answer, the learner responded by
saying: ‘I applied the theorem of the angle at
centre is equal to twice the angle at the
circumference. Then this means that AOB = 30°.
Then the angles of a triangle add up to 180°.
Therefore, 180° — 30° all divided by 2 = 75°’.
This also indicates that the learner was also able
to make algebraic procedural connections and
hence managed to find that A, = B,75°.

Geometric reversibility becoming feature
connections

Generally, learners’ responses show that they
were able to make reversibility connections that
informed correct geometric feature connections.
For example, in item 1.2, in Figure 6, the learner
noticed that segment BP is equal to PC and
managed to identify the size of angle P, as equal
to 90°. When asked why she wrote the reason
that way, the learner responded by stating the
theorem which states that ‘A line drawn from the
centre of the circle perpendicular to the chord,
bisects the chord’. The learner made the correct
feature connection and reversibility connection
and got the correct size of angle P;; however,
the reasoning during interviews was not correct.
She should have stated the reason as ‘If a line is
drawn from the centre of a circle to the mid-
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point of a chord, then the line is perpendicular to
the chord” which is the corollary of the theorem
that she stated as a reason during interviews.
Failure to make geometric feature
connections

Most learners failed to make correct
geometric feature connections. For example,
Learner 7’s attempt for item 1.3, in Figure 6,
indicates the inability to make geometric feature
connections. The learner wrongly stated that
angle B; is equal to angle B. In this case, the
learner made a wrong geometric feature
connection by applying properties of an
isosceles triangle in a triangle that is not
isosceles. When interviewed the learner stated
that ‘the two angles are angles opposite equal
sides of an isosceles triangle’. When asked
which triangle is isosceles, that’s when the
learner realised that she made a mistake.

In addition, the inability to make correct
feature connections was also evident in Figure 7
in which Learner 9’s work on one of the tasks is
presented.

Figure 7 reveals that Learner 9 started by
equating angles PQR and RST. The justification
for equating the two mentioned angles was given
as ‘exterior angle of a cyclic quadrilateral is
equal to its interior opposite angle’. The learner
failed to make a geometric feature connection.
According to this learner, any four-sided figure
inside a circle is regarded as a cyclic
quadrilateral. However, PQRS is not a cyclic
quadrilateral. The learner failed to understand
that for a quadrilateral to be cyclic all its vertices
should be on the circumference of the circle.
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Although the learner showed strong algebraic
connections by being able to group like terms
(2x — x = 80° + 40°) together, the learner started
on the wrong footing by equating angles that are
not equal (2x — 40° # x — 8°). The learner failed
to realise that the reflex PSR (180° + x — 8°) is

the angle at the centre of PQR (2x — 40°). This
learner failed to apply the theorem that states
that the angle at the centre is twice the angle at
the circumference of the circle. Hence, this
affected the learner’s solution  process.

1B
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FIGURE 8: Learner 17 responses to class activity 2: (a) Question and (b) Learner’s response.

Geometric feature connections leading to
geometric and algebraic procedural
connections

Some learners were able to make correct
geometric feature connections which led to
geometric and procedural connections when
solving Euclidean geometry riders. Figure 8
presents a learner’s work on a given question.
This question in Figure 8 requires learners to
make a transition from geometric feature
connections to either geometric or algebraic
connections. The two solutions are discussed
separately below.

Geometric feature connections leading to
geometric procedural connections:

From Figure 8, it can be noticed that in an
attempt to get the solution of item 1.1, Learner
17 started by stating that K= 90°, which was
true, and further gave the correct reason for that
statement although he made a typo by writing
same circle instead of a semi-circle. This

indicates that the learner was able to identify the
angle subtended by the diameter in the given
diagram and made the geometric feature
connection that it is equal to 90°. The learner
realised that to get the correct solution for item
1.1, there is a need to prove congruency in the
two triangles: ALPN and ALMN. Feature
connections were identified again when the
learner stated that LM is common when proving
congruency in the two triangles. The learner did
not manage to finish the congruency procedure;
instead, he concluded by stating that L, = 28°.
This indicates that the learner was equating L, to
M. Failure to make geometric procedural
connections by writing the last statement of
congruency meant the learner did not arrive at
the final solution, that is the size of angle LPN.
The learner was confused by starting with the
statement that K = 90° because K is not an
interior angle of any of the triangles, ALPN or
ALMN. In trying to gain insight into the
learner’s responses, the researcher asked him the
following question: ‘Why do you start by
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writing that K = 90°?” The learner responded by
saying ‘I was trying to prove congruency in the
two triangles. So, since we are given that PL is a
diameter it means that K = 90°>. The learner
made a correct feature connection; however, this
was not necessary to solve the given problem.
Instead, he should have used angles N; and N,
because the two angles are equal. Thus, Learner
17°s procedural and feature connections were
partially correct because everything given on 1.1
was correct, but there were some important
statements left out which could have helped the
learner to reach the correct solution.

Geometric feature connections leading to
algebraic procedural connections:

On item 1.2 in Figure 8, Learner 17 made
correct geometric features and algebraic
procedural connections in an attempt to solve the
problem. The learner made a geometric feature
connection by using the sum of interior angles of
a triangle to determine the size of angle L;. He
then used angle L to determine the size of angle
L, because the two angles are equal since
triangles ALPN and ALMN are congruent.
Furthermore, the learner used angles L, and L5
to determine the size of angle L, because the
three angles are on a straight line adding up to
180°. Therefore, the learner made the correct
geometric feature connections as well as
algebraic procedural connections. The learner
made another geometric feature connection
when determining the size of angle L, because
L, is half of angle KOP according to the theorem
‘angle subtended by an arc at the centre of a
circle is twice the angle subtended by the same
arc on the circumference’. The learner applied
this theorem to get the size of angle KOP, which
was the one required.

Discussion

This study explored Grade 11 learners’
algebraic and geometric connections when
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solving Euclidean geometry riders. Data were
collected from a conveniently selected sample of
30 Grade 11 Ilearners who responded to
classwork and homework activities and were
interviewed on their responses to the given tasks.
Data were analysed using reflexive thematic
analysis. From the thematic analysis, this study
has established the following.

In this study, we found that feature
connections are at the centre of solving
geometric riders. For Grade 11 learners to be
able to solve Euclidean geometry riders
successfully, they need to establish the feature
connections embedded in the given figure or
diagram. The ability to make feature connections
provides a point of departure in the solution
process of a geometric problem. Once the
feature  connection is established, other
connections will subsequently emerge. This
study established that when solving riders, the
feature connections needed to be made are
always geometric as they are based on the
shapes, lines and theorems in the given rider
(Fauzi, 2015). Therefore, failure to make feature
connections causes learners to fail to make a
breakthrough to rider solutions. This is in line
with Ngirishi and Bansilal (2019) who found
that when learners fail to make connections
between shapes and properties of shapes, they
subsequently fail to solve geometric problems.
The ability to make the correct feature
connections helps learners to proceed with the
solution process as identified in some learners in
this study. This implies that teachers need to
emphasise the skill of making feature
connections  when teaching solutions to
Euclidean geometry riders.

It was further established in this study that
learners who were able to make correct
geometric feature connections managed to
proceed with the solution process as identified in
some learners’ work. It is established that
making correct feature connections leads to
making procedural connections which could
either be algebraic or geometric. For algebraic
procedural connections, this study discovered
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that after identifying the properties of the given
figure, learners were able to apply algebraic
processes, for example simplification, needed to
solve the problem. This finding is consistent
with Suwito et al. (2016) who pointed out that
solving Euclidean geometry problems requires
an understanding of algebraic and arithmetic
concepts. However, some of the learners did not
manage to find the correct solution to the
problem due to a lack of algebraic procedural
connections. This indicates that these learners
were unable to summarise the geometric
concepts algebraically using equations (Pilgrim
& Bloemker, 2016). For geometric procedural
connections, it has been discovered that learners
were able to make geometric procedural
connections when applying congruency after
identifying the properties of the given triangle.
This result concurs with Fauzi (2015) who
indicated that for learners to solve Euclidean
geometry riders successfully they need to
connect different geometric concepts such as the
congruency of triangles. These results also
indicate that learners were unable to complete
the geometric procedure as they didn’t manage
to finish the congruency of the triangle. This
might be due to a lack of identification of the
geometric properties of the given triangles.

In addition, this study found that when
solving Euclidean geometry riders, geometric
reversibility connections become a form of
feature connection. This has been identified
when some learners gave reasons about a
theorem instead of stating the corollary of that
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