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Abstract: 

In this article, we explored Grade 11 learners‟ algebraic and geometric connections when solving 

Euclidean geometry riders. A qualitative interpretive case study design was followed. Thirty Grade 11 

learners from a non-fee-paying secondary school in the Capricorn North district of South Africa were 

conveniently sampled to participate in this study. Data were collected through learners‟ responses to 

classwork, homework exercises, and task-based interviews. Data were analysed thematically. The 

findings revealed that to solve Euclidean geometry riders successfully, learners need to establish the 

feature connections embedded in the given figure or diagram. The ability to make feature connections 

provides a point of departure in the solution process of a geometric problem. 

Keywords: Algebraic connections; geometric connections; deductive thematic analysis; Euclidean 

geometry riders. 

 

Introduction 

This study explored Grade 11 learners‟ 

algebraic and geometric connections when 

solving Euclidean geometry riders. A Euclidean 

geometry rider is a geometric problem based on 

a set of theorems, definitions and axioms 

(Giannakopoulos, 2017). Solving Euclidean 

geometry riders requires learners to connect their 

algebraic and geometric concepts (Kemp & 

Vidakovic, 2021). South African learners 

grapple with solving Euclidean geometry 

problems because of the inability to integrate 

geometric and algebraic knowledge (Machisi, 

2021). In Euclidean geometry, concepts are 

represented by axioms, definitions, theorems, 

and proofs (Denbel, 2015, Madzore, 2017). 

Solving Euclidean geometry problems helps 

learners to develop logical and deductive 

reasoning skills, which help them to expand their 

mental and emotional capacities (Liu et al., 

2015). According to Pavlovičová and Bočková 

(2021), learning geometry improves learners‟ 

geometric thinking. Therefore, learners need to 

be taught Euclidean geometry to develop their 

conceptual knowledge and analytical skills 

(Mamali, 2015). Furthermore, solving Euclidean 

geometry problems requires learners to apply 

their visualisation skills. Knowledge of 

arithmetic and algebraic concepts is essential in 

solving Euclidean geometry problems (Suwito et 

al., 2016). When solving Euclidean geometry 

problems, learners interact with shapes in 

different orientations (Siyepu & Mtonjeni, 

2014).  

South African learners in Grade 11 are 

expected to solve Euclidean geometry riders and 

prove theorems as part of their coursework 

(Department of Basic Education [DBE], 2011). 

Euclidean geometry riders are integrated into 

other mathematics concepts, such as 

trigonometry, coordinate geometry, and algebra 
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(Denbel, 2015). Furthermore, riders contain 

different mathematical concepts, for example the 

congruency of triangles, and properties of 

parallel lines (Fauzi, 2015). As such, learners 

need to combine different mathematical content 

knowledge and procedures when solving 

Euclidean geometry riders, which also helps 

them to develop conceptual knowledge (In‟am, 

2016). According to Govender (2014), learners 

should connect theorems within Euclidean 

geometry, and apply concepts from other 

branches of mathematics such as algebra, 

trigonometry and analytical geometry. When 

solving and proving Euclidean geometry riders, 

learners are required to apply knowledge of 

theorems and properties of shapes to formulate 

algebraic equations to solve the problems and 

interpret them geometrically (Pilgrim & 

Bloemker, 2016). Therefore, this indicates that 

learners‟ competence in proving and solving 

geometry riders depends on their abilities to 

connect and integrate algebraic and geometric 

concepts and processes during the solution 

process (Sialaros & Christianidis, 2016). The 

ability to connect algebraic knowledge and 

knowledge of Euclidean geometry is an essential 

prerequisite skill for solving geometric riders as 

well as developing conceptual integration during 

problem-solving (Pilgrim & Bloemker, 2016). It 

is therefore necessary to look at the algebraic 

and geometric connections that Grade 11 

learners make when solving Euclidean geometry 

riders. 

The ability to make connections is an 

essential skill for solving Euclidean geometry 

riders successfully (Reddy, 2015). Learners who 

possess this ability can integrate or identify 

properties of figures within representations. 

Mathematical connection refers to the skill of 

making interrelationships among mathematical 

concepts, skills, and as well as relating ideas to 

real-world situations and other related topics 

(Haji et al., 2017). Learners who possess this 

skill view mathematics as a complete entity, not 

a separate subject of distinct concepts 

(Egodawatte & Stoilescu, 2015). There are two 

categories of mathematical connections, namely 

internal and external connections (Baiduri et al., 

2020). Internal connections are interrelationships 

between mathematical topics, mathematical 

processes and procedures (Baiduri et al., 2020). 

External connections are interrelationships 

between mathematics and other subjects in the 

curriculum as well as everyday life (Ayunani & 

Indriati, 2020). Thus, mathematical connections 

provide learners with a broader and more 

holistic understanding and view of mathematics 

(Ndiung & Nendi, 2018). Learners learn about 

the properties of shapes and theorems of 

Euclidean geometry and then summarise these 

concepts algebraically using equations (Pilgrim 

& Bloemker, 2016). When learners possess 

mathematical connection skills, they will be able 

to successfully solve Euclidean geometry riders. 

Several researchers revealed that learners 

experienced some challenges when solving 

Euclidean geometry riders. Makonye and 

Fakude (2016) reported that learners incorrectly 

apply Euclidean geometry theorems during 

problem-solving. The South African National 

Senior Certificate Diagnostic Report showed 

that learners had trouble relating prior 

knowledge to concepts of Euclidean geometry, 

visualising diagrams and solving problems 

(DBE, 2020). Furthermore, Ngirishi and Bansilal 

(2019) reported that South African learners fail 

to make correct constructions when proving 

theorems; they incorrectly apply Euclidean 

geometry theorems and figure properties (DBE, 

2020). Learners have misconceptions about 

geometric concepts because they rely on the 

physical appearance of the figures, an inability 

to associate geometric properties with each 

other, overgeneralisation, and memorisation 

(Zuya & Kwalat, 2015). In addition, learners 

struggle to incorporate or connect other 

mathematical concepts and struggle with writing 

algorithms correctly when solving riders (DBE, 

2020; Luneta, 2015). This indicates that learners 

experience challenges in connecting geometric 
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and algebraic knowledge when proving and 

solving riders. Thus, in this article, we explored 

Grade 11 learners‟ algebraic and geometric 

connection skills for solving and proving 

Euclidean geometry riders. 

Literature Review 

The integration of algebraic and geometric 

concepts in solving Euclidean geometric 

problems has been a topic of significant interest 

in mathematical education. This approach 

leverages the strengths of both algebra and 

geometry, fostering deeper understanding and 

more versatile problem-solving skills. 

Integrating algebraic and geometric concepts 

helps students develop a more comprehensive 

set of tools for solving problems. Algebra 

provides a systematic approach to solving 

equations, while geometry offers visual intuition 

and spatial reasoning. The integration of the two 

problem-solving skills provides learners with a 

versatile approach to tackling geometry 

problems. Studies have shown that learners who 

are proficient in both areas perform better in 

complex problem-solving tasks (Fuson et al., 

1997). 

Euclidean geometry is a significant topic for 

developing mathematical skills. However, 

learner performance in geometry remains a 

concern in many countries (Mosia et al., 2023). 

In South Africa, the teaching and learning of 

Euclidean geometry has been identified as one 

of the topics that is a challenge for both teachers 

and learners (Giannakopoulos, 2017). This 

observation suggests the need for an urgent 

intervention to seek an alternative approach to 

the teaching and learning of Euclidean geometry 

(Jojo, 2015). Proficiency in using mathematical 

connections is an important mathematical skill, 

and learners should embrace it as a tool for 

solving mathematical problems. Learners with 

good mathematical connection skills have high 

success rates in solving mathematical problems. 

On the other hand, learners with poor 

mathematical connection skills struggle with 

solving mathematical problems. Learners‟ low 

mathematical connections efficacy impacts on 

learners‟ failure in solving mathematical 

problems. The learners‟ ability to solve 

mathematical problems is measured by the 

number of mathematical connections they are 

able to make as they are solving the problem. 

When learners connect mathematical ideas, their 

understanding is deeper and more lasting, and 

they come to view mathematics as a coherent 

whole. By solving mathematical problems, 

learners gain ways of thinking, habits of 

persistence and curiosity, and confidence in 

unfamiliar situations that serve them well 

outside the mathematics classroom. When 

learners can connect mathematical ideas, their 

understanding of mathematics becomes deeper 

and more durable (Ayunani & Indriati, 2020). 

Mathematical tasks that involve the relationship 

between mathematical ideas within a topic and 

between topics train learners to improve their 

mathematical connection abilities. 

In the South African curriculum for the 

Further Education and Training (FET) Phase, 

solving Euclidean geometric problems involves 

leveraging various mathematical connections 

and concepts. When solving Euclidean geometry 

riders, which are essentially challenging 

geometry problems, integrating algebraic and 

geometric connections can significantly enhance 

problem-solving efficiency and depth. By 

integrating algebraic and geometric approaches, 

learners can more effectively solve Euclidean 

geometry riders, deepening their understanding 

and improving their problem-solving skills. In 

Euclidean geometry, riders are challenging 

problems that require a deep understanding of 

various theorems and their applications. Solving 

these problems often involves connecting 

multiple geometric theorems, allowing for a 

comprehensive approach to complex problem-

solving (Giannakopoulos, 2017). By connecting 

these various mathematical concepts and 
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methods, one can approach Euclidean geometric 

problems from multiple angles, making the 

solution process more robust and 

comprehensive. 

Theoretical framework 

The mathematical connection framework of 

García-García and Dolores-Flores (2018) guided 

this study. The mathematical connections 

framework consists of the following tenets: 

procedural, part-whole, different representations, 

reversibility, meaning, and feature. Figure 1 

shows the theoretical framework that guided this 

study.   

The mathematical connection framework in 

Figure 1 shows the mathematics connections that 

can be used during problem-solving. These 

connections include procedural, different 

representations, features, reversibility, meaning, 

and part-whole (García-García & Dolores-

Flores, 2018). This study focused on exploring 

Grade 11 learners‟ algebraic and geometric 

connections when solving Euclidean geometry 

riders.  

 

 
Source: Adopted from Garcĺa-Garcĺa, J., & Dolores-Flores, C. (2018). Exploring mathematical connections of pre-university learners through 

tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369–389. https://doi. 

org/10.1080/0020739X.2018.1507050 

FIGURE 1: Framework to study mathematical connections. 

 

Procedural connections 

Procedural connections are made when 

learners use formulas, algorithms, and rules to 

solve a mathematics problem (García-García & 

Dolores-Flores, 2018). Procedural connections 

also include learners‟ explanations and 

justifications for using a particular formula or 

procedure to solve a mathematical problem 

(García-García & Dolores-Flores, 2018). 

Recently, García-García and Dolores-Flores 

(2021) defined a procedural connection as a 

mathematical connection in a situation, in which 

if learners have or identify concept A, then B 

automatically becomes a procedure to get the 

solution. For example, if a learner identifies that 

a triangle is right-angled, then the procedure for 

solving it can involve the application of the 

Theorem of Pythagoras and trigonometric ratios. 

In proving and solving riders, learners identify 
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the applicable theorems and corollaries from the 

given geometric diagrams.   

Different representations connections 

Different representation refers to presenting a 

mathematical idea in an equivalent or alternative 

way (García-García & Dolores-Flores, 2018). 

An alternative representation is when learners 

can present a mathematical concept in more than 

one form of representation (Rodriguez-Nieto et 

al., 2020). Different forms of representation take 

the form: algebraic-graphic, verbal–graphic, 

algebraic-verbal, etc. Alternative different 

representations connections are observed when 

learners present theorems as algorithms and 

when learners present theorems 

diagrammatically. For example, the theorem 

stated as „Angle subtended by an arc at the 

centre is twice the angle subtended by the same 

arc on the circumference in the other segment‟ 

can be represented algebraically or 

diagrammatically. Figure 2 presents this 

theorem.   

Equivalent different representations 

connections, on the other hand, appear within 

the same register (for example algebraic-

algebraic); the focus is more on simplifying the 

same representation. For example, the algebraic 

function f(x) = x² + 5x + 6 is equivalent to f(x) = 

(x + 3) (x + 2). Equivalent different 

representations connections are made when 

learners   

 

 
FIGURE 2: The angle at the centre is twice the angle at the circumference. 

 

can present theorems in different forms 

within one register. For example, the theorem 

presented in Figure 2 can be written as, 

 ̂    ̂      ̂   
 

 
 ̂ 

and the three pictures in Figure 2 represent 

the same theorem but in different shapes and 

orientations. 

Feature connections   

Feature connections are recognised when 

learners can identify mathematical concepts in 

different contexts using their properties (Garcĺa-

Garcĺa & Dolores-Flores, 2018). Likewise, 

feature connections are mostly identified when 

learners describe or develop descriptions of 

properties of concepts in terms of the other as a 

way of differentiating the concepts (Eli et al., 

2013). Furthermore, the characteristics of 

mathematical concepts are used to differentiate 

them from others (Eli et al., 2013). In the context 

of Euclidean geometry, the characteristics of 

mathematical concepts refer to the properties of 

shapes and their relations (Luneta, 2015). For 

example, Figure 3 and Figure 4 present different 

theorems but they have common aspects in 

terms of shape.   

Reversibility connections   

According to Garcĺa-Garcĺa and Dolores-

Flores (2018), reversibility connections are 

observed when learners are able to identify the 

bidirectional relationship between mathematical 

ideas and concepts. Reversibility connections are 

evident when learners are able to use concept X 

to arrive at concept Y and vice versa (Garcĺa-
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Garcĺa & Dolores-Flores, 2018). Reversibility 

connections are observed when learners are able 

to recognise and establish relationships among 

theorems, corollaries, and converses. 

Reversibility connections are mostly displayed 

when learners are supposed to prove Euclidean 

geometry riders, for example „the angle 

 
FIGURE 3: The angle at the centre is twice the angle at the circumference. 

 

 
FIGURE 4: Cyclic quadrilateral PQRS. 

 

Between a tangent and a chord is equal to the 

angle subtended by the same chord in the other 

segment‟. Thus, when learners are not given a 

circle but are required to prove that a certain 

segment is a tangent, they are supposed to 

identify the two angles they can prove are equal 

and those angles should be equal.   

Meaning connections   

Meaning connections are identified when 

learners can describe mathematical concepts in 

their own way using relevant reasons and 

arguments when solving mathematical tasks 

(Garcĺa-Garcĺa & Dolores-Flores, 2018). 

Learners give mathematical concepts meaning to 

differentiate them, to get a sense of what they 

mean to themselves in different contexts and 

give them a definition (Garcĺa-Garcĺa & 

Dolores-Flores, 2021). The difference between 

feature connections and meaning connections is 

that mathematical concepts in feature 

connections are not given definitions while in 

meaning connections they are given definitions 

(Garcĺa-Garcĺa & Dolores-Flores, 2018). 

Proving and solving the riders of Euclidean 

geometry establish contexts of meaning when 

learners can identify geometric shapes in 

different orientations. In addition, meaningful 

contexts arise when learners can prove the 

diameter and tangents of the circles that are not 

drawn. For example, in geometry an exterior 

angle is one of the angles located outside a 

geometric figure, but for it to be called an 

exterior angle it must be on the same straight 
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line as its interior adjacent angle. That is, with 

the latter, the angle outside a figure will not be 

called an exterior angle, if it does not fall on the 

same straight line as the interior adjacent angle.   

Part-whole connections   

Part-whole connections appear when learners 

identify the logical relationship between 

mathematical concepts when solving 

mathematical tasks (Garcĺa-Garcĺa & Dolores-

Flores, 2021). There are two forms of part-whole 

connections, namely: inclusion and 

generalisation. Inclusion part-whole connections 

occur when learners can realise a mathematical 

concept within another concept (Garcĺa-Garcĺa 

& Dolores-Flores, 2021). Generalisation part-

whole connections occur when learners are able 

identify general forms of a concept from a 

specific concept. In Euclidean geometry, 

generalisation part-whole connections are 

presented through theorems and their corollaries. 

Theorems are general statements that learners 

must conceptualise to the respective geometry 

diagrams they are presented within a particular 

question. 

Research methods and design 

In this article, a qualitative interpretive case 

study design by Merriam (1998) was utilised. 

Grade 11 mathematics learners were considered 

as a case. All 30 Grade 11 learners were 

conveniently sampled to participate in this study 

(Cohen et al., 2011). These participants were 

also purposefully selected as Euclidean 

geometry is prescribed for them in South Africa. 

The participants were from a public secondary 

school in Capricorn North district, South Africa. 

Participants consisted of 19 girls and 11 boys, 

and their ages ranged from 16 to 18 years. Data 

for this study consist of learners‟ responses to 

classwork and homework activities. 

Additionally, data were triangulated using task-

based interviews through which learners were 

asked questions about the connections they were 

making when solving the given classwork and 

homework activities. All the task-based 

interviews were video-recorded and later 

transcribed. Reflexive thematic analysis was 

used to analyse the collected data (Braun & 

Clarke, 2006). The data were coded and grouped 

into themes according to their commonalities 

drawn from the mathematical connection 

framework constructs which comprise 

procedural, different representation, feature, 

reversibility, meaning and part-whole 

connections (Garcĺa-Garcĺa & Dolores-Flores, 

2018). These were further classified as either 

algebraic or geometric connections when 

finalising the themes that are reported in this 

study. Data triangulation of classwork and task-

based interviews, peer debriefing of all the 

authors and audit trail of the whole research 

process were followed to ensure trustworthiness 

during the analysis process (Nowell et al., 2017). 

Learners‟ parents consented to their children‟s 

participation in the study. In addition, the 

participants assented to participate in this study. 

Pseudonyms were used in place of learners‟ 

names. The Limpopo Provincial Department of 

Education and the selected school gave their 

permission to conduct the study. 

Results 

Learners‟ responses to task-based interviews, 

classwork and homework activities were 

analysed thematically in this study. In this study, 

we selected some of the learners‟ responses 

based on the connections they made as they 

solved the problems. The algebraic and 

geometric connections that learners made in this 

study are presented below.   

Geometric feature connections leading to 

algebraic procedural connections   

Some learners managed to identify the 

properties of geometric figures embedded in the 

rider. These learners made geometric feature 

connections which led to procedural connections 
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which are algebraic. For example, Learner 26‟s 

response to question 3 of class activity 2 is 

shown in Figure 5.   

From Figure 5, the learner started by making 

feature connections that helped him to determine 

the length of AB and BC. The learner further 

applied algebraic connections to determine the 

correct length of AB. The statements AB = 4x 

and BC = 4x show that the learner was able to 

make feature connections by applying the 

theorem which states that „A line drawn from the 

centre of the circle perpendicular to the chord 

bisects the chord‟. Thus, the learner was able to 

connect the correct theorem with the diagram 

through the features of the given diagram. 

Therefore, the learner was able to make the 

geometric feature connection by applying the 

correct theorem to the given diagram. In 

addition, the learner made a geometric feature 

connection by applying the Theorem of 

Pythagoras to determine the radius OC of the 

circle.   

The learner managed to substitute correctly, 

thus making the correct algebraic procedural 

connection. However, the learner could not get 

to the solution because of simplification after 

substitution into the Theorem of Pythagoras. 

This learner wrote OC = 2x, which means that 

the learner was taking the square root of each 

term of the equation. The learner failed to 

simplify the surds, hence committing an 

algebraic procedural error. When interviewed 

about why he wrote that way, the learner 

responded by saying: „OC is the square root of 

OC2 and 2x2 + (4x)2 = 2x‟. This learner failed 

to make connections between the square and the 

square root concepts which affected the learner‟s 

solution process. Therefore, the learner was 

unable to finish the procedure due to a lack of 

knowledge of simplifying the surds.   

Geometric feature connections leading to 

algebraic procedural connections   

From Figure 6, item 1.1, Learner 7 was able 

to make geometric feature connections. The 

learner identified that  ̂    ̂  and managed to 

justify that statement with the correct reason. 

The learner was able to realise that OA and OB 

are radii of the given circle and are equal, hence 

making triangle ABO an 

 
FIGURE 5: Learner 26 response to question 3 of class activity 2: (a) Question and (b) Learner‟s 

response. 

 

FIGURE 6: Learner 7 response to home activity 1: (a) Question and (b) Learner‟s response. 
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FIGURE 7: Learner 9 response to question 2 of home activity 2: (a) Question and (b) Learner‟s 

response. 

Isosceles triangle. Although the learner did 

not write all the algebraic steps of determining 

the size of  ̂ , the feature connections 

established helped the learner find that the size 

of  ̂ = 75°. This also emanated from the learner 

being able to connect  ̂  to A ̂B. During the 

task-based interviews, when asked how she 

arrived at the answer, the learner responded by 

saying: „I applied the theorem of the angle at 

centre is equal to twice the angle at the 

circumference. Then this means that A ̂B = 30°. 

Then the angles of a triangle add up to 180°. 

Therefore, 180° − 30° all divided by 2 = 75°‟. 

This also indicates that the learner was also able 

to make algebraic procedural connections and 

hence managed to find that   ̂  =  ̂ 75°.   

 

Geometric reversibility becoming feature 

connections 

Generally, learners‟ responses show that they 

were able to make reversibility connections that 

informed correct geometric feature connections. 

For example, in item 1.2, in Figure 6, the learner 

noticed that segment BP is equal to PC and 

managed to identify the size of angle  ̂  as equal 

to 90°. When asked why she wrote the reason 

that way, the learner responded by stating the 

theorem which states that „A line drawn from the 

centre of the circle perpendicular to the chord, 

bisects the chord‟. The learner made the correct 

feature connection and reversibility connection 

and got the correct size of angle  ̂ ; however, 

the reasoning during interviews was not correct. 

She should have stated the reason as „If a line is 

drawn from the centre of a circle to the mid-

point of a chord, then the line is perpendicular to 

the chord‟ which is the corollary of the theorem 

that she stated as a reason during interviews.   

Failure to make geometric feature 

connections 

Most learners failed to make correct 

geometric feature connections. For example, 

Learner 7‟s attempt for item 1.3, in Figure 6, 

indicates the inability to make geometric feature 

connections. The learner wrongly stated that 

angle  ̂  is equal to angle  ̂. In this case, the 

learner made a wrong geometric feature 

connection by applying properties of an 

isosceles triangle in a triangle that is not 

isosceles. When interviewed the learner stated 

that „the two angles are angles opposite equal 

sides of an isosceles triangle‟. When asked 

which triangle is isosceles, that‟s when the 

learner realised that she made a mistake.   

In addition, the inability to make correct 

feature connections was also evident in Figure 7 

in which Learner 9‟s work on one of the tasks is 

presented.   

Figure 7 reveals that Learner 9 started by 

equating angles P ̂R and R ̂T. The justification 

for equating the two mentioned angles was given 

as „exterior angle of a cyclic quadrilateral is 

equal to its interior opposite angle‟. The learner 

failed to make a geometric feature connection. 

According to this learner, any four-sided figure 

inside a circle is regarded as a cyclic 

quadrilateral. However, PQRS is not a cyclic 

quadrilateral. The learner failed to understand 

that for a quadrilateral to be cyclic all its vertices 

should be on the circumference of the circle. 
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Although the learner showed strong algebraic 

connections by being able to group like terms 

(2x − x = 80° + 40°) together, the learner started 

on the wrong footing by equating angles that are 

not equal (2x − 40° ≠ x − 8°). The learner failed 

to realise that the reflex PŜR (180° + x − 8°) is 

the angle at the centre of P ̂R (2x − 40°). This 

learner failed to apply the theorem that states 

that the angle at the centre is twice the angle at 

the circumference of the circle. Hence, this 

affected the learner‟s solution process.  

 

FIGURE 8: Learner 17 responses to class activity 2: (a) Question and (b) Learner‟s response. 

Geometric feature connections leading to 

geometric and algebraic procedural 

connections   

Some learners were able to make correct 

geometric feature connections which led to 

geometric and procedural connections when 

solving Euclidean geometry riders. Figure 8 

presents a learner‟s work on a given question. 

This question in Figure 8 requires learners to 

make a transition from geometric feature 

connections to either geometric or algebraic 

connections. The two solutions are discussed 

separately below.   

Geometric feature connections leading to 

geometric procedural connections:  

From Figure 8, it can be noticed that in an 

attempt to get the solution of item 1.1, Learner 

17 started by stating that  ̂= 90°, which was 

true, and further gave the correct reason for that 

statement although he made a typo by writing 

same circle instead of a semi-circle. This 

indicates that the learner was able to identify the 

angle subtended by the diameter in the given 

diagram and made the geometric feature 

connection that it is equal to 90°. The learner 

realised that to get the correct solution for item 

1.1, there is a need to prove congruency in the 

two triangles: ΔLPN and ΔLMN. Feature 

connections were identified again when the 

learner stated that LM is common when proving 

congruency in the two triangles. The learner did 

not manage to finish the congruency procedure; 

instead, he concluded by stating that  ̂  = 28°. 

This indicates that the learner was equating  ̂  to 

 ̂. Failure to make geometric procedural 

connections by writing the last statement of 

congruency meant the learner did not arrive at 

the final solution, that is the size of angle L ̂N. 

The learner was confused by starting with the 

statement that  ̂ = 90° because  ̂ is not an 

interior angle of any of the triangles, ΔLPN or 

ΔLMN. In trying to gain insight into the 

learner‟s responses, the researcher asked him the 

following question: „Why do you start by 
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writing that  ̂ = 90°?‟ The learner responded by 

saying „I was trying to prove congruency in the 

two triangles. So, since we are given that PL is a 

diameter it means that  ̂ = 90°‟. The learner 

made a correct feature connection; however, this 

was not necessary to solve the given problem. 

Instead, he should have used angles  ̂  and  ̂  

because the two angles are equal. Thus, Learner 

17‟s procedural and feature connections were 

partially correct because everything given on 1.1 

was correct, but there were some important 

statements left out which could have helped the 

learner to reach the correct solution.   

Geometric feature connections leading to 

algebraic procedural connections:  

On item 1.2 in Figure 8, Learner 17 made 

correct geometric features and algebraic 

procedural connections in an attempt to solve the 

problem. The learner made a geometric feature 

connection by using the sum of interior angles of 

a triangle to determine the size of angle  ̂ . He 

then used angle  ̂  to determine the size of angle 

 ̂  because the two angles are equal since 

triangles ΔLPN and ΔLMN are congruent. 

Furthermore, the learner used angles  ̂  and  ̂  

to determine the size of angle  ̂  because the 

three angles are on a straight line adding up to 

180°. Therefore, the learner made the correct 

geometric feature connections as well as 

algebraic procedural connections. The learner 

made another geometric feature connection 

when determining the size of angle  ̂ , because 

 ̂  is half of angle K ̂P according to the theorem 

„angle subtended by an arc at the centre of a 

circle is twice the angle subtended by the same 

arc on the circumference‟. The learner applied 

this theorem to get the size of angle K ̂P, which 

was the one required. 

Discussion 

This study explored Grade 11 learners‟ 

algebraic and geometric connections when 

solving Euclidean geometry riders. Data were 

collected from a conveniently selected sample of 

30 Grade 11 learners who responded to 

classwork and homework activities and were 

interviewed on their responses to the given tasks. 

Data were analysed using reflexive thematic 

analysis. From the thematic analysis, this study 

has established the following.   

In this study, we found that feature 

connections are at the centre of solving 

geometric riders. For Grade 11 learners to be 

able to solve Euclidean geometry riders 

successfully, they need to establish the feature 

connections embedded in the given figure or 

diagram. The ability to make feature connections 

provides a point of departure in the solution 

process of a geometric problem. Once the 

feature connection is established, other 

connections will subsequently emerge. This 

study established that when solving riders, the 

feature connections needed to be made are 

always geometric as they are based on the 

shapes, lines and theorems in the given rider 

(Fauzi, 2015). Therefore, failure to make feature 

connections causes learners to fail to make a 

breakthrough to rider solutions. This is in line 

with Ngirishi and Bansilal (2019) who found 

that when learners fail to make connections 

between shapes and properties of shapes, they 

subsequently fail to solve geometric problems. 

The ability to make the correct feature 

connections helps learners to proceed with the 

solution process as identified in some learners in 

this study. This implies that teachers need to 

emphasise the skill of making feature 

connections when teaching solutions to 

Euclidean geometry riders.   

It was further established in this study that 

learners who were able to make correct 

geometric feature connections managed to 

proceed with the solution process as identified in 

some learners‟ work. It is established that 

making correct feature connections leads to 

making procedural connections which could 

either be algebraic or geometric. For algebraic 

procedural connections, this study discovered 
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that after identifying the properties of the given 

figure, learners were able to apply algebraic 

processes, for example simplification, needed to 

solve the problem. This finding is consistent 

with Suwito et al. (2016) who pointed out that 

solving Euclidean geometry problems requires 

an understanding of algebraic and arithmetic 

concepts. However, some of the learners did not 

manage to find the correct solution to the 

problem due to a lack of algebraic procedural 

connections. This indicates that these learners 

were unable to summarise the geometric 

concepts algebraically using equations (Pilgrim 

& Bloemker, 2016). For geometric procedural 

connections, it has been discovered that learners 

were able to make geometric procedural 

connections when applying congruency after 

identifying the properties of the given triangle. 

This result concurs with Fauzi (2015) who 

indicated that for learners to solve Euclidean 

geometry riders successfully they need to 

connect different geometric concepts such as the 

congruency of triangles. These results also 

indicate that learners were unable to complete 

the geometric procedure as they didn‟t manage 

to finish the congruency of the triangle. This 

might be due to a lack of identification of the 

geometric properties of the given triangles.   

In addition, this study found that when 

solving Euclidean geometry riders, geometric 

reversibility connections become a form of 

feature connection. This has been identified 

when some learners gave reasons about a 

theorem instead of stating the corollary of that 

theorem. This indicates that switching between 

feature and reversibility connections in 

Euclidean geometry does not hinder learners‟ 

solution process when solving riders.   

Conclusion 

The findings of this study indicated that 

making geometric feature connections is the 

starting point of solving Euclidean geometry 

riders. Therefore, we recommend future studies 

to be conducted focusing on geometric feature 

connections as a base for solving Euclidean 

geometry riders. Furthermore, the findings 

show that reversibility connections become a 

form of feature connections and do not hinder 

learners‟ solution process. Therefore, we 

conclude that learners need to be taught to 

identify all the geometric features embedded in 

a given rider first before attempting to solve it. 

Failure to make correct feature connections 

results in learners‟ inability to solve the given 

Euclidean geometry riders. Therefore, we 

recommend that learners be equipped with 

sufficient and appropriate mathematical 

connections during the teaching and learning of 

Euclidean geometry. In addition, learners 

should be taught the skill to identify the feature 

connections embedded in the given rider and 

this will help them during the problem-solving 

process of Euclidean geometry. The feature 

connections will enable learners to make correct 

algebraic and geometric connections.  
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